The use of many halogenated alkanes such as carbon tetrachloride (CCl4), chloroform (CHCl3) or iodoform (CHI3), has been banned or severely restricted because of their distinct toxicity. Yet CCl4 continues to provide an important service today as a model substance to elucidate the mechanisms of action of hepatotoxic effects such as fatty degeneration, fibrosis, hepatocellular death, and carcinogenicity. In a matter of dose,exposure time, presence of potentiating agents, or age of the affected organism, regeneration can take place and lead to full recovery from liver damage. CCl4 is activated by cytochrome (CYP)2E1, CYP2B1 or CYP2B2, and possibly CYP3A, to form the trichloromethyl radical, CCl3*. This radical can bind to cellular molecules (nucleic acid, protein, lipid), impairing crucial cellular processes such as lipid metabolism, with the potential outcome of fatty degeneration (steatosis). Adduct formation between CCl3* and DNA is thought to function as initiator of hepatic cancer. This radical can also react with oxygen to form the trichloromethylperoxy radical CCl3OO*, a highly reactive species. CCl3OO* initiates the chain reaction of lipid peroxidation, which attacks and destroys polyunsaturated fatty acids, in particular those associated with phospholipids. This affects the permeabilities of mitochondrial, endoplasmic reticulum, and plasma membranes, resulting in the loss of cellular calcium sequestration and homeostasis, which can contribute heavily to subsequent cell damage. Among the degradation products of fatty acids are reactive aldehydes, especially 4-hydroxynonenal, which bind easily to functional groups of proteins and inhibit important enzyme activities. CCl4 intoxication also leads to hypomethylation of cellular components; in the case of RNA the outcome is thought to be inhibition of protein synthesis, in the case of phospholipids it plays a role in the inhibition of lipoprotein secretion. None of these processes per se is considered the ultimate cause of CCl4-induced cell death; it is by cooperation that they achieve a fatal outcome, provided the toxicant acts in a high single dose, or over longer periods of time at low doses. At the molecular level CCl4 activates tumor necrosis factor (TNF)alpha, nitric oxide (NO), and transforming growth factors (TGF)-alpha and -beta in the cell, processes that appear to direct the cell primarily toward (self-)destruction or fibrosis. TNFalpha pushes toward apoptosis, whereas the TGFs appear to direct toward fibrosis. Interleukin (IL)-6, although induced by TNFalpha, has a clearly antiapoptotic effect, and IL-10 also counteracts TNFalpha action. Thus, both interleukins have the potential to initiate recovery of the CCl4-damaged hepatocyte. Several of the above-mentioned toxication processes can be specifically interrupted with the use of antioxidants and mitogens, respectively, by restoring cellular methylation, or by preserving calcium sequestration. Chemicals that induce cytochromes that metabolize CCl4, or delay tissue regeneration when co-administered wi...
Liver Damage, Carbon Tetrachloride, PeroxidationCCl4-induced liver damage was modeled in monolayer cultures of rat primary hepatocytes with a focus on involvement of covalent binding of CC14 metabolites to cell components and/ or peroxidative damage as the cause of injury.(1) Covalent binding of 1 4 C-labeled metabolites was detected in hepatocytes immediately after exposure to CC14. (2) Low oxygen partial pressure increased the reductive metabolism of CC14 and thus covalent binding. (3) [1 4 C]-CC14 was bound to lipids and to proteins throughout subcellular fractions. Binding occurred preferentially to triacylglycerols and phos pholipids, with phosphatidylcholine containing the highest amount of label. (4) The lipid peroxidation potency of CC14 revealed subtle differences compared to other peroxidative substances, viz., A D P-Fe3+ and cumol hydroperoxide, respectively. (5) CC14, but not the other peroxidative substances, decreased the rate of triacylglycerol secretion as very low density lipoproteins. (6 ) The anti-oxidant vitamin E (a-tocopherol) blocked lipid peroxidation, but not covalent binding, and secretion of lipoproteins remained inhibited. (7) The radical scav enger piperonyl butoxide prevented CCl4-induced lipid peroxidation as well as covalent bind ing of CCI4 metabolites to cell components, and also restored lipoprotein metabolism.The results confirm that covalent binding of the CC13* radical to cell components initiates the inhibition of lipoprotein secretion and thus steatosis, whereas reaction with oxygen, to form CCI3 -O O * , initiates lipid peroxidation. The two processes are independent of each other, and the extent to which either process occurs depends on partial oxygen pressure. The former process may result in adduct formation and, ultimately, cancer initiation, whereas the latter results in loss of calcium homeostasis and, ultimately, apoptosis and cell death.
Prenatal exposure to infection is a significant environmental risk factor in the development of schizophrenia and related disorders. Recent evidence indicates that disruption of functional and structural dopaminergic development may be at the core of the developmental neuropathology associated with psychosis-related abnormalities induced by prenatal exposure to infection. Using a mouse model of prenatal immune challenge by the viral mimic polyriboinosinic-polyribocytidilic acid, the present study critically evaluated this hypothesis by longitudinally monitoring the effects of maternal immune challenge during pregnancy on structural and functional dopaminergic development in the offspring from fetal to adult stages of life. Our study shows that prenatal immune challenge leads to dopaminergic maldevelopment starting as early as in the fetal stages of life and produces a set of postnatal dopaminergic abnormalities that is dependent on postnatal maturational processes. Furthermore, our longitudinal investigations reveal a striking developmental correspondence between the ontogeny of specific dopaminergic neuropathology and the postnatal onset of distinct forms of dopaminedependent functional abnormalities implicated in schizophrenia. Prenatal immune activation thus appears to be a significant environmental risk factor for primary defects in normal dopaminergic development and facilitates the expression of postnatal dopamine dysfunctions involved in the precipitation of psychosis-related behavior. Early interventions targeting the developing dopamine system may open new avenues for a successful attenuation or even prevention of psychotic disorders following neurodevelopmental disruption of dopamine functions.
The molecular mechanism of how hepatocytes maintain cholesterol homeostasis has become much more transparent with the discovery of sterol regulatory element binding proteins (SREBPs) in recent years. These membrane proteins are members of the basic helix-loop-helix-leucine zipper (bHLH-Zip) family of transcription factors. They activate the expression of at least 30 genes involved in the synthesis of cholesterol and lipids. SREBPs are synthesized as precursor proteins in the endoplasmic reticulum (ER), where they form a complex with another protein, SREBP cleavage activating protein (SCAP). The SCAP molecule contains a sterol sensory domain. In the presence of high cellular sterol concentrations SCAP confines SREBP to the ER. With low cellular concentrations, SCAP escorts SREBP to activation in the Golgi. There, SREBP undergoes two proteolytic cleavage steps to release the mature, biologically active transcription factor, nuclear SREBP (nSREBP). nSREBP translocates to the nucleus and binds to sterol response elements (SRE) in the promoter/enhancer regions of target genes. Additional transcription factors are required to activate transcription of these genes. Three different SREBPs are known, SREBPs-1a, -1c and -2. SREBP-1a and -1c are isoforms produced from a single gene by alternate splicing. SREBP-2 is encoded by a different gene and does not display any isoforms. It appears that SREBPs alone, in the sequence described above, can exert complete control over cholesterol synthesis, whereas many additional factors (hormones, cytokines, etc.) are required for complete control of lipid metabolism. Medicinal manipulation of the SREBP/SCAP system is expected to prove highly beneficial in the management of cholesterol-related disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.