Background/Aims: Mesenchymal stem/stromal cells (MSCs) are known to home to sites of tumor microenvironments where they participate in the formation of the tumor microenvironment and to interplay with tumor cells. However, the potential functional effects of MSCs on tumor cell growth are controversial. Here, we, from the view of bone marrow MSC-derived exosomes, study the molecular mechanism of MSCs on the growth of human osteosarcoma and human gastric cancer cells. Methods: MSCs derived from human bone marrow (hBMSCs) were isolated and cultured in complete DMEM/F12 supplemented with 10% exosome-depleted fetal bovine serum and 1% penicillin-streptomycin, cell culture supernatants containing exosomes were harvested and exosome purification was performed by ultracentrifugation. Osteosarcoma (MG63) and gastric cancer (SGC7901) cells, respectively, were treated with hBMSC-derived exosomes in the presence or absence of a small molecule inhibitor of Hedgehog pathway. Cell viability was measured by transwell invasion assay, scratch migration assay and CCK-8 test. The expression of the signaling molecules Smoothened, Patched-1, Gli1 and the ligand Shh were tested by western blot and RT-PCR. Results: In this study, we found that hBMSC-derived exosomes promoted MG63 and SGC7901 cell growth through the activation of Hedgehog signaling pathway. Inhibition of Hedgehog signaling pathway significantly suppressed the process of hBMSC-derived exosomes on tumor growth. Conclusion: Our findings demonstrated the new roles of hedgehog signaling pathway in the hBMSCs-derived exosomes induced tumor progression.
MicroRNA-26a (miR-26a) is a tumor suppressor that is reduced in hepatocellular carcinoma (HCC). Increasing evidence indicates that the liver is a hormone-responsive organ like the breast. The purpose of this study was to investigate whether miR-26a, regulated by a human α-fetoprotein (hAFP) and human telomerase reverse transcriptase (hTERT) dual promoter, could be specifically expressed in liver tumor cells to suppress their growth and to clarify whether estrogen receptor-α (ERα) is regulated by miR-26a and involved in the HCC process. Our data show that miR-26a expression driven by a hAFP-TERT dual promoter was tumor-specific and decreased the viability of tumor cells by regulating ERα, progesterone receptor (PR) and P53 except for cyclin D2 or cyclin E2 in vitro and in vivo. Our data also show that estradiol (E2) promotes the growth of liver cancer cells similar to breast cancer cells partly via the E2-ERα pathway and that miR-26a significantly down regulates ERα and prevents the stimulation of hepatoma cell growth by E2. These data suggest that ERα, which is regulated by miR-26a, is important for liver tumor cell growth. Moreover, hAFP-TERT dual promoter-mediated miR-26a expression could specifically exert potential antitumor activity and provide a novel targeting approach for cancer therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.