During cutting of foods, tensile stresses in front of the blade are responsible for the separation of the material. Therefore, tensile tests can be helpful to gain knowledge on deformation properties related to pre-fracture cutting behavior as well as on phenomena in the fracture zone, which are velocity-dependent in viscoelastic materials. The aim of this work was to apply a tensile test method for model caramels to investigate their behavior and to identify conditions where the ductile-brittle transition occurs. After executing pre-trials, tensile velocity, caramel moisture, and temperature were the parameters that were varied for this purpose. In general, increasing velocity, decreasing temperature, and decreasing moisture resulted in a stiffer response and caused a shift from a ductile to a more brittle behavior, attributable to reduced viscous contributions to the material and longer relaxation times. Fracture strain was notably lower than the maximum plastic elongation in the ductile case, but we observed equalization close to the ductile-brittle transition point for our material. This study serves as basis for an in-depth research on the complex deformation and fracture phenomena during cutting of viscoelastic food systems, including numerical modeling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.