We present a modification of the alternating iterative method, which was introduced by Kozlov and Maz'ya, for solving the Cauchy problem for the Helmholtz equation in a Lipschitz domain. The reason for this modification is that the standard alternating iterative algorithm does not always converge for the Cauchy problem for the Helmholtz equation. The method is then implemented numerically using the finite difference method.
The Cauchy problem for the Helmholtz equation appears in various applications. The problem is severely ill-posed and regualrization is needed to obtain accurate solutions. We start from a formulation of this problem as an operator equation on the boundary of the domain and consider the equation in (H 1/2) * spaces. By introducing an artificial boundary in the interior of the domain we obtain an inner product for this Hilbert space in terms of a quadratic form associated with the Helmholtz equation; perturbed by an integral over the artificial boundary. The perturbation guarantees positivity property of the quadratic form. This inner product allows an efficient evaluation of the adjoint operator in terms of solution of a well-posed boundary value problem for the Helmholtz equation with transmission boundary conditions on the artificial boundary. In an earlier paper we showed how to take advantage of this framework to implement the conjugate gradient method for solving the Cauchy problem. In this work we instead use the Conjugate gradient method for minimizing a Tikhonov functional. The added penalty term regularize the problem and gives us a regularization parameter that can be used to easily control the stability of the numerical solution with respect to measurement errors in the data. Numerical tests show that the proposed algorithm works well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.