It has been recognized that an increased penetration of electric vehicles (EVs) may potentially alter load profile in a distribution network. As EVs are regarded as a diversely distributed load so a deterministic method, to predict EV charging load, may not account for all possible factors that could affect the power system. Thus, a stochastic approach is applied that takes into account various realistic factors such as EV battery capacity, state of charge (SOC), driving habit/need, i.e., involving type and purpose of trip, plug-in time, mileage, recharging frequency per day, charging power rate and dynamic EV charging price under controlled and uncontrolled charging schemes. A probabilistic model of EVs charging pattern associated with residential load profile is developed. The probabilistic model gives an activity based residential load profile and EV charging pattern over a period of 24 h. Then, the model output is used to assess the power quality index such as voltage unbalance factor under different electric vehicle penetration levels at different nodes of the system. An uneven EV charging scenario is identified that could cause the voltage unbalance to exceed its permissible limit.
COVID-19 detection and classification using chest X-ray images is a current hot research topic based on the important application known as medical image analysis. To halt the spread of COVID-19, it is critical to identify the infection as soon as possible. Due to time constraints and the expertise of radiologists, manually diagnosing this infection from chest X-ray images is a difficult and time-consuming process. Artificial intelligence techniques have had a significant impact on medical image analysis and have also introduced several techniques for COVID-19 diagnosis. Deep learning and explainable AI have shown significant popularity among AL techniques for COVID-19 detection and classification. In this work, we propose a deep learning and explainable AI technique for the diagnosis and classification of COVID-19 using chest X-ray images. Initially, a hybrid contrast enhancement technique is proposed and applied to the original images that are later utilized for the training of two modified deep learning models. The deep transfer learning concept is selected for the training of pretrained modified models that are later employed for feature extraction. Features of both deep models are fused using improved canonical correlation analysis that is further optimized using a hybrid algorithm named Whale-Elephant Herding. Through this algorithm, the best features are selected and classified using an extreme learning machine (ELM). Moreover, the modified deep models are utilized for Grad-CAM visualization. The experimental process was conducted on three publicly available datasets and achieved accuracies of 99.1, 98.2, and 96.7%, respectively. Moreover, the ablation study was performed and showed that the proposed accuracy is better than the other methods.
This paper presents a new algorithm for the denoising of images corrupted with random-valued impulse noise (RVIN). It employs a switching approach that identifies the noisy pixels in the first stage and then estimates their intensity values to restore them. Local statistics of the textons in distinct orientations of the sliding window are exploited to identify the corrupted pixels in an iterative manner; using an adaptive threshold range. Textons are formed by using an isometric grid of minimum local distance that preserves the texture and edge pixels of an image, effectively. At the noise filtering stage, fuzzy rules are used to obtain the noise-free pixels from the proposed tridirectional pixels to estimate the intensity values of identified corrupted pixels. The performance of the proposed denoising algorithm is evaluated on a variety of standard gray-scale images under various intensities of RVIN by comparing it with state-of-the-art denoising methods. The proposed denoising algorithm also has robust denoising and restoration power on biomedical images such as, MRI, X-Ray and CT-Scan. The extensive simulation results based on both quantitative measures and visual representations depict the superior performance of the proposed denoising algorithm for various noise intensities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.