Four sets of correction factors needed to apply the new small field dosimetry formalism are provided for several active detectors. A protocol for small photon beams OF determination based on passive dosimeters measurements has been recently proposed to French radiotherapy treatment centers.
Graft copolymers were designed that could spontaneously bind to biological surfaces and block subsequent recognition and adhesion at those surfaces. Phenylboronic acid (PBA) moieties in the polymer backbone provided binding to surfaces, forming reversible covalent complexes with cis-diols found in many biological molecules. Pendant poly(ethylene glycol) (PEG) side chains sterically protected those surfaces from subsequent interactions with other proteins and cells. The PEG and PBA grafting ratios on these poly-L-lysine-graft-(PEG;PBA) copolymers [PLL-g-(PEG;PBA)] were varied, and the polymers were tested in models relevant to undesirable wound-healing responses such as peritoneal adhesion formation and posterior capsule opacification. PLL-g-(PEG;PBA) polymers spontaneously coated tissue culture polystyrene and completely blocked rabbit lens epithelial cell adhesion to the surface over a wide range of PEG grafting ratios. PLL-g-(PEG;PBA)s with optimal grafting ratios were able to coat adsorbed serum proteins or extracellular matrices and block cell spreading on the surfaces at 4 h, although the effect was lost within 24 h. The polymer also enhanced the efficacy of surgical lysis of peritoneal adhesions in rats. The reversible covalent complexes formed by the PBA moieties on the copolymer backbone were more effective at binding biological surfaces than electrostatic interactions formed via a copolymer lacking the PBA moieties, that is, PLL-g-PEG.
Purpose: In the frame of the QA program of RENEB, an inter-laboratory comparison (ILC) of calibration sources used in biological dosimetry was achieved to investigate the influence of calibration practices and protocols on the results of the dose estimation performance as a first step to harmonization and standardization of dosimetry and irradiation practices in the European biological dosimetry network. Materials and methods: Delivered doses by irradiation facilities used by RENEB partners were determined with EPR/alanine dosimetry system. Dosimeters were irradiated in the same conditions as blood samples. A short survey was also performed to collect the information needed for the data analysis and evaluate the diversity of practices. Results: For most of partners the deviation of delivered dose from the targeted dose remains below 10%. Deviations larger than 10% were observed for five facilities out of 21. Origins of the largest discrepancies were identified. Correction actions were evaluated as satisfactory. The re-evaluation of some ILC results for the fluorescence in situ hybridization (FISH) and premature chromosome condensation (PCC) assays has been performed leading to an improvement of the overall performances. Conclusions: This work has shown the importance of dosimetry in radiobiology studies and the needs of harmonization, standardization in irradiation and dosimetry practices and educational training for biologists using ionizing radiation.
ARTICLE HISTORY
Physically-based dosimetry techniques present high capacity, new possibilities for accident dosimetry, especially in the case of large-scale events. Some of the techniques applied can be considered as operational (e.g. OSL on Surface Mounting Devices [SMD]) and provide a large increase of measurement capacity for existing networks. Other techniques and devices currently undergoing validation or development in Europe could lead to considerable increases in the capacity of the RENEB accident dosimetry network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.