Reclaimable adsorbents have a critical application in the adsorption of radioactive materials. In this study, the novel bio-nanocomposites comprising fungi and titanate nanotubes are successfully synthesized by a simple and low-cost method. Morphological characterizations and composite mechanism analysis confirm that the composites are sufficiently stable to avoid dust pollution resulting from the titanate nanomaterials. Adsorption experiments demonstrate that the bio-nanocomposites are efficient adsorbents with a saturated sorption capacity as high as 120 mg g(-1) (1.75 meq. g(-1)) for Ba(2+) ions. The results suggest that the bio-nanocomposites can be used as promising radioactive adsorbents for removing radioactive ions from water caused by nuclear leakage.
In this study, titanate nanotubes with a layered structure were investigated for the uptake of radioactive uranium ions for the first time. The nanotubes have been successfully prepared with a reaction of Ti metal nanopowders and NaOH mixed solution by a novel and effective ultrasonic-assisted hydrothermal method. As the absorbent of radioactive ions, they have the ability to selectively adsorb radioactive U ions from water via ion exchange process and subsequently immobilize these ions in the nanotube sorbents without the need of further treatment after absorption. Sorption induces considerable deformation of the layer structures, resulting in the structures changing from the nanotubes to sheets and having the ability of permanent entrapment of the radioactive cations in these as-grown sheets. Our results have proved that titanate nanotubes can be used as a promising absorbent for the removal of nuclear leaking water at the first time.
Given high importance of solving the problem of environmental pollution by radioactive elements, the goal of research is to develop the hybrid sorbent with application of various nanoforms (nanotubes, nanopowders) of metal oxides and modified by these nanoforms mycelium of nonpathogenic mold fungi of various kinds as components In this article we evaluated the possibility of regeneration of the developed hybrid sorbent after the sorption process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.