[1] The effects of changing ice and atmospheric conditions on the upwelling of deep nutrient-laden waters and biological productivity in the coastal Beaufort Sea were quantified using a unique combination of in situ and remote-sensing approaches. Repeated instances of ice ablation and upwelling during fall 2007 and summer 2008 multiplied the production of ice algae, phytoplankton, zooplankton and benthos by 2 to 6 fold. Strong wind forcing failed to induce upward shifts in the biological productivity of stratified waters off the shelf.
[1] The Arctic summer minimum sea ice extent has experienced a decreasing trend since 1979, with an extreme minimum extent of 4.27 Â 10 6 km 2 in September 2007, and a similar minimum in 2011. Large expanses of open water in the Siberian, Laptev, Chukchi, and Beaufort Seas result from declining summer sea ice cover, and consequently introduce long fetch within the Arctic Basin. Strong winds from migratory cyclones coupled with increasing fetch generate large waves which can propagate into the pack ice and break it up. On 06 September 2009, we observed the intrusion of large swells into the multiyear pack ice approximately 250 km from the ice edge. These large swells induced nearly instantaneous widespread fracturing of the multiyear pack ice, reducing the large, (>1 km diameter) parent ice floes to small (100-150 m diameter) floes. This process increased the total ice floe perimeter exposed to the open ocean, allowing for more efficient distribution of energy from ocean heat fluxes, and incoming radiation into the floes, thereby enhancing lateral melting. This process of sea ice decay is therefore presented as a potential positive feedback process that will accelerate the loss of Arctic sea ice.
The Circumpolar Flaw Lead (CFL) system study is a Canadian-led International Polar Year (IPY) initiative with over 350 participants from 27 countries. The study is multidisciplinary in nature, integrating physical sciences, biological sciences and Inuvialuit traditional knowledge. The CFL study is designed to investigate the importance of changing climate processes in the flaw lead system of the northern hemisphere on the physical, biogeochemical and biological components of the Arctic marine system. The circumpolar flaw lead is a perennial characteristic of the Arctic throughout the winter season and forms when the mobile multi-year (MY) pack ice moves away from coastal fast ice, creating recurrent and interconnected polynyas in the Norwegian, Icelandic, North American and Siberian sectors of the Arctic. The CFL study was 293 days in duration and involved the overwintering of the Canadian research icebreaker CCGS Amundsen in the Cape Bathurst flaw lead throughout the annual sea-ice cycle of 2007-2008. In this paper we provide an introduction to the CFL project and then use preliminary data from the field season to describe the physical flaw lead system, as observed during the CFL overwintering project. Preliminary data show that ocean circulation is affected by eddy propagation into Amundsen Gulf (AG). Upwelling features arising along the ice edge and along abrupt topography are also detected and identified as important processes that bring nutrient rich waters up to the euphotic zone. Analysis of sea-ice relative vorticity and sea-ice area by ice type in the AG during the CFL study illustrates increased variability in ice vorticity in late autumn 2007 and an increase in new and young ice areas in the AG during winter. Analysis of atmospheric data show that a strong northeast-southwest pressure gradient present over the AG in autumn may be a synoptic-scale atmospheric response to sensible and latent heat fluxes arising from areas of open water persisting into late November 2007. The median atmospheric boundary layer temperature profile over the Cape Bathurst flaw lead during the winter season was stable but much less so when compared to Russian ice island stations.RéSuMé [Traduit par la rédaction] L'étude du système du chenal de séparation circumpolaire (CSC) est une initiative de l'Année polaire internationale (API) menée par le Canada et à laquelle 350 participants provenant de 27 pays ont pris part. L'étude, de nature multidisciplinaire, fait appel aux sciences physiques et biologiques ainsi qu'au savoir traditionnel Inuvialuit. L'étude du CSC vise à examiner les répercussions des processus climatiques changeants dans le système du chenal de séparation de l'hémisphère Nord sur les composantes physiques, biogéochimiques et biologiques du système marin arctique. Le CSC est une caractéristique permanente de l'Arctique durant la saison d'hiver et se forme quand la banquise mobile de glace de plusieurs années s'éloigne de la banquise côtière fixe en créant des polynies récurrentes et interconnectées dans les sec...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.