In this paper, a Hamilton-Jacobi-Bellman (HJB) equation-based optimal control algorithm for robust controller design is proposed for nonlinear systems. The HJB equation is formulated using a suitable nonquadratic term in the performance functional to tackle constraints on the control input. Utilizing the direct method of Lyapunov stability, the controller is shown to be optimal with respect to a cost functional, which includes penalty on the control effort and the maximum bound on system uncertainty. The bounded controller requires the knowledge of the upper bound of system uncertainty. In the proposed algorithm, neural network is used to approximate the solution of HJB equation using least squares method. Proposed algorithm has been applied on the nonlinear system with matched and unmatched type system uncertainties and uncertainties in the input matrix. Necessary theoretical and simulation results are presented to validate proposed algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.