Enhancing wake recovery behind wind turbines has the potential to significantly improve the power production and efficiency of large wind farms. Rather than investigating turbine control strategies, floater motion or global turbulent quantities such as turbulence intensity, this work aims to study wake stability and recovery through a focus on the turbulent scales of the inflow. Using Large Eddy Simulations of a single turbine, sinusoidal streamwise forcing is applied to the inflow with a constant amplitude and mean flow velocity, but differing time scales between 80s and 140s. For all applied time scales the turbine wake is characterised by the rolling-up of the near wake into the periodic shedding of vortex rings, and an excitation of the applied forcing frequency resulting in velocity fluctuations in the wake several times larger than that at the inflow. For shorter time scales (80s - 90s) a more aggressive and earlier wake roll-up led to a shorter near wake region, faster overall recovery and significantly improved the expected power output from 6R downstream onwards. An inflow time period of 80s gave rise to more than a 50% increase in power output of a fictive downstream turbine placed at 14R downstream, compared to an inflow time scale of 140s.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.