The pyrolysis of methane has been studied in a static system at temperatures of 995, 1038, 1068, and 1103 K and pressures from 25 to 700 Torr. It was concluded that the initial stages of the reaction can be described by a simple homogeneous, nonchain radical mechanism:[Formula: see text]Initial rates of reaction were measured, based on analysis of hydrogen, ethane, and ethylene, and k1 was found to be pressure dependent and homogeneous. Quantitative agreement was obtained with values of k1 calculated by R.R.K.M. theory. Values of A∞ = 2.8 × 1016 s−1 and E∞ = 107.6 kcal/mol were obtained, the latter appreciably greater than the value of E0 = 103 kcal/mol used in the calculations. Comparison of previous shock-tube and flow-system data at temperatures up to 2200 K showed good agreement with values of k1 obtained by extrapolation of the present R.R.K.M. calculations. It was concluded that in all previous studies, the initial dissociation was in its pressure-dependent region. Estimates were also made of the rate constant for the reverse of [1] and showed fair agreement with recent experimental measurements.
In the thermal decomposition of methane at temperatures from 880 to 1103 K, hydrogen and ethane are the only primary products. The rate of formation of ethane falls rapidly towards zero as the reaction progresses until ethane reaches a steady-state concentration. This behaviour is interpreted in terms of a radical chain mechanism,[Formula: see text]Values of k4 were obtained which confirm the non-Arrhenius behaviour of this reaction at these temperatures. Similar chain sequences propagated by addition or abstraction reactions of methyl radicals with ethylene, propylene, and acetylene can account for the formation and disappearance of these secondary products.At a later stage in the pyrolysis a marked autocatalysis is observed and the yield of ethane increases sharply above its steady-state value. It is concluded that this autocatalysis is largely a homogeneous process and is not caused by or associated with carbon formation. Deposition of carbon on the surface was observed at a still later stage of the decomposition, and was quantitatively estimated by light absorption measurements. Possible mechanisms for the auto catalysis are discussed.
. Can. J. Chem. 67, 1541 (1989). Rate constants for the abstraction of hydrogen from benzene, toluene, and cyclopentane by methyl and ethyl radicals have been measured relative to the corresponding abstraction reaction from ethylene. The method is based on the effect on the rates of formation of methane and ethane of the addition of small quantities of the reactants to the thermal chain reactions of ethylene in the temperature range 650-770 K. Taking the following values of the rate constants for the reference reactions (R = 8.314 J mol-' K-I):[4] C2Hs + C2H4 -* C2H6 + C2H3; log k4 (L mol-' s-I) = 8.2 t-0.2 -(62200 t-3000)/2.3RT the following rate constants were measured:[8] C2Hs + C6H6 -* C2H6 + C6HS; log kg (~m 0 1 -' S-') = 8.8 i 0.3 -(62200 i 5000)/2.3RT [ l l ] CH3 + C7Hg + CH4 + C7H7; log kll (L mol-' s-') = 7.4 i 0.5 -(29000 ? 7000)/2.3RT[12] C2HS + C7H8 'C2H6 + C7H7; log k12 ( L m~l -' s -~) = 7.7 * 0.5 -(37000 ? 7000)/2.3RT[15] CH3 + c-CsHlo -CH4 + c-C5Hg; log klS (L mol-' s-I) = 8.3 2 0.5 * (36000 ?7000)/2.3RTThe values of the activation energies are discussed in relation to the dissociation energies of the C-H bonds in the reactants.
Freshwaters are recognized as dynamic systems that may be far-removed from equilibrium. A kinetic approach using the competing ligand exchange method with Chelex 100 as the competing ligand and inductively coupled plasmamass spectrometry to measure the dissociation kinetics was used to investigate the chemical speciation of Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), and Pb(II) in model solutions of a well-characterized fulvic acid (Laurentian fulvic acid) and a freshwater sample collected from the Grand River (Ontario, Canada). The kinetic distribution of the metal species were quantitatively characterized by their first-order dissociation rate constants. This kinetic speciation approach has the advantage of providing an objective method for estimating the dissociation rate constants without any a priori assumptions about the number of kinetically distinguishable components or the shape of the distribution. Three factors were found to influence the kinetics of trace metal competition in the freshwater environment: (i) metal-to-ligand ratio, (ii) ionic potential (z2/r), and (iii) ligand field stabilization energy. The results illustrate the importance of considering the valence-shell electron configuration in predicting the kinetics of trace metal competition in the freshwater environment. The markedly slow dissociation kinetics of Ni(II) and Cu(II) species suggest that the usual equilibrium assumption for freshwaters may not be valid. This study has demonstrated the ability of the kinetic model to correctly predict the relative rates of trace metal reactions, indicating that the kinetic model provides a chemically significant description of the kinetic processes in natural waters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.