High accuracy dental impression is usually a first step during fabrication of indirect restorations that have to be seated in or on prepared teeth. The dimensional stability of the impression material could have an influence on the accuracy of the final restoration. Elastomeric materials (addition-cured silicones and condensation-cured silicones) are most frequently used as the impression material in fixed prosthodontics. The composition and the type of the chemical reaction determine the urgency to cast or digitize the impression. The aim of this study was to asses the dimensional stability of addition and condensation -cured silicones in time.Stainless steel model of two cylinders with the spherical top was fabricated. First, individual tray of acrylic resin was made according to the standard procedure. Addition and condensation cured silicon impressions were taken using monophase technique in acrylic tray. Impressions were cast in type IV dental stone after different periods of time, and dental stone replica models were made. Master model and dental stone replica models were scanned using Carl Zeiss Coordinate measuring machine Contura G2 with associated volumetric probing tolerance of 1µm. Processing was done using Calypso software.Addition and condensation cured silicon impressions were cast after different periods of time. Master model and dental stone replica models were scanned and the differences between the models were measured. The dimensional differences between the master model and the replica models occurred due to the dimensional instability of the impression material. The differences were significantly greater when condensation cured silicon impression material was used comparing to the addition cured silicon impression material.Both condensation and addition silicon showed satisfactory dimensional stability if cast according to the manufacturer's instructions. If so, the linear dimensional changes did not exceed 1%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.