Photovoltaic (PV) technology is considered one of the most effective and promising renewable sources of energy. The PV system’s efficiency strongly depends on its operating temperature, which acts as a defect to the electrical efficiency by increasing over 25 °C. In this work, a comparison was performed between three traditional polycrystalline solar panels simultaneously at the same time and under the same weather conditions. The electrical and thermal performances of the photovoltaic thermal (PVT) system integrated with a serpentine coil configured sheet with a plate thermal absorber setup are evaluated using water and aluminum oxide nanofluid. For higher mass flow rates and nanoparticle concentrations, an improvement in the PV modules short-circuit current (Isc) and open-circuit voltage (Voc) yield and electrical conversion efficiency is achieved. The enhancement in the PVT electrical conversion efficiency is 15.5%. For 0.05% volume concentration of Al2O3 and flow rate of 0.07 kg/s, an enhancement of 22.83% of the temperature of PVT panels’ surface over the reference panel has been obtained. An uncooled PVT system reached a maximum panel temperature of 75.5 °C at noontime and obtained an average electrical efficiency of 12.156%. Water and nanofluid cooling reduce the panel temperature by 10.0 °C and 20.0 °C at noontime, respectively.
The azimuthal correlation, $$\Delta \phi _{12}$$
Δ
ϕ
12
, of high transverse momentum jets in pp collisions at $$\sqrt{s}=13$$
s
=
13
TeV is studied by applying PB-TMD distributions to NLO calculations via MCatNLO together with the PB-TMD parton shower. A very good description of the cross section as a function of $$\Delta \phi _{12}$$
Δ
ϕ
12
is observed. In the back-to-back region of $${\Delta \phi _{12}}\rightarrow \pi $$
Δ
ϕ
12
→
π
, a very good agreement is observed with the PB-TMD Set 2 distributions while significant deviations are obtained with the PB-TMD Set 1 distributions. Set 1 uses the evolution scale while Set 2 uses transverse momentum as an argument in $$\alpha _\mathrm {s}$$
α
s
, and the above observation therefore confirms the importance of an appropriate soft-gluon coupling in angular ordered parton evolution. The total uncertainties of the predictions are dominated by the scale uncertainties of the matrix element, while the uncertainties coming from the PB-TMDs and the corresponding PB-TMD shower are very small. The $$\Delta \phi _{12}$$
Δ
ϕ
12
measurements are also compared with predictions using MCatNLO together Pythia8, illustrating the importance of details of the parton shower evolution.
We report a new measurement of the production of electrons from open heavy-flavor hadron decays (HFEs) at mid-rapidity (|y| < 0.7) in Au+Au collisions at $$ \sqrt{s_{\textrm{NN}}} $$
s
NN
= 200 GeV. Invariant yields of HFEs are measured for the transverse momentum range of 3.5 < pT< 9 GeV/c in various configurations of the collision geometry. The HFE yields in head-on Au+Au collisions are suppressed by approximately a factor of 2 compared to that in p + p collisions scaled by the average number of binary collisions, indicating strong interactions between heavy quarks and the hot and dense medium created in heavy-ion collisions. Comparison of these results with models provides additional tests of theoretical calculations of heavy quark energy loss in the quark-gluon plasma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.