We demonstrate amorphization in a Ge(10)Sb(2)Te(13) (GST) thin film through a nonthermal process by femtosecond electronic excitation. Amorphous recording marks were formed by irradiation with a single femtosecond pulse, and were confirmed to be recrystallized by laser thermal annealing. Scanning electron microscope observations revealed that amorphization occurred below the melting temperature. We performed femtosecond pump-probe measurements to investigate the amorphization dynamics of a GST thin film. We found that the reflectivity dropped abruptly within 500fs after excitation by a single pulse and that a small change in the reflectivity occurred within 5ps of this drop.
ZnS nanocrystals doped with Mn2+ ions are prepared by a solution process and subsequent UV irradiation to produce the samples with different S/(Zn+Mn) ratios and/or surface modification by acrylic acids. Coordination states around Mn2+, ions were examined at 9 and 35 GHz by electron paramagnetic resonance spectroscopy. The Mn2+ sites in the vicinity of 2- vacancies or carboxyl groups are observed at the frequencies more than 9 or 35 GHz, respectively, for nanocrystals, but are not for the bulk sample of 250 nm diameter. Such Mn2+ sites enhance the photoluminescence due to d-d transition of Mn2+ ions through energy transfer from S2- vacancies or carboxyl groups, excited simultaneously by a light of 350 nm for exciting ZnS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.