Enhanced Oil Recovery techniques are gaining more attention worldwide as the proved oil reserves are declining and the oil price is hiking. Although many giant oil reservoirs in the world were already screened for EOR processes, the main challenges such as low sweep efficiency, costly techniques, possible formation damages, transportation of huge amounts of EOR agents to the fields especially for offshore cases, analyzing micro-scale multi-phase flow in the rock to the large scale tests and the lack of analyzing tools in traditional experimental works, hinder the proposed EOR processes. Our past experiences on using nanotechnology to the upstream cases, especially EOR processes, revealed solutions to some of the challenges associated with old EOR techniques. This method that utilizes particles in the order of 1 to100nm brings specific thermal, optical, electrical, rheological and interfacial properties which are directly useful to release the trapped oil from the pore spaces in the order of 5 to 50 microns of tight oil formations. Laboratory tests using nanoparticles as the EOR agent, developing nano computational models to explore the surface properties and utilizing nano-scale analyzing tools such as atomic force microscopy (AFM), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) mostly for nanoparticles distribution in the pore spaces and on the surfaces for wettability alteration studies are the main parts of this investigation. This paper summarizes new findings from several different theoretical, analytical and experimental works which shows the effectiveness of traditional methods when assisted by this new technology. Ultimately, based on the past experiences, a roadmap will be proposed to avoid the ongoing trial and error practice in this area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.