Several causes make brain cancer identification a challenging task for neurosurgeons during the surgical procedure. The surgeons' naked eye sometimes is not enough to accurately delineate the brain tumor location and extension due to its diffuse nature that infiltrates in the surrounding healthy tissue. For this reason, a support system that provides accurate cancer delimitation is essential in order to improve the surgery outcomes and hence the patient's quality of life. The brain cancer detection system developed as part of the ''HypErspectraL Imaging Cancer Detection'' (HELICoiD) European project meets this requirement exploiting a non-invasive technique suitable for medical diagnosis: the hyperspectral imaging (HSI). A crucial constraint that this system has to satisfy is providing a real-time response in order to not prolong the surgery. The large amount of data that characterizes the hyperspectral images, and the complex elaborations performed by the classification system make the High Performance Computing (HPC) systems essential to provide real-time processing. The most efficient implementation developed in this work, which exploits the Graphic Processing Unit (GPU) technology, is able to classify the biggest image of the database (worst case) in less than three seconds, largely satisfying the real-time constraint set to 1 minute for surgical procedures, becoming a potential solution to implement hyperspectral video processing in the near future.
The precise delineation of brain cancer is a crucial task during surgery. There are several techniques employed during surgical procedures to guide neurosurgeons in the tumor resection. However, hyperspectral imaging (HSI) is a promising non-invasive and non-ionizing imaging technique that could improve and complement the currently used methods. The HypErspectraL Imaging Cancer Detection (HELICoiD) European project has addressed the development of a methodology for tumor tissue detection and delineation exploiting HSI techniques. In this approach, the K-means algorithm emerged in the delimitation of tumor borders, which is of crucial importance. The main drawback is the computational complexity of this algorithm. This paper describes the development of the K-means clustering algorithm on different parallel architectures, in order to provide real-time processing during surgical procedures. This algorithm will generate an unsupervised segmentation map that, combined with a supervised classification map, will offer guidance to the neurosurgeon during the tumor resection task. We present parallel K-means clustering based on OpenMP, CUDA and OpenCL paradigms. These algorithms have been validated through an in-vivo hyperspectral human brain image database. Experimental results show that the CUDA version can achieve a speed-up of ~ 150 × with respect to a sequential processing. The remarkable result obtained in this paper makes possible the development of a real-time classification system.
SUMMARYThis paper is devoted to analyzing varactors based on PN junction cells in order to obtain a capacitance model for radiofrequency (RF) applications. A cell is the minimum structure that can be considered a varactor, including all necessary layers and connections. Then, a specific capacitance for a RF integrated circuit is obtained overlapping all necessary cells horizontally and vertically. Our model estimates the total capacitance in a varactor, from both ports, considering all relevant internal contributions. Ten varactors based on the same cell have been designed and fabricated in 0.35 mm SiGe technology. These novel structures were also measured on-wafer for frequencies ranging between 0.5 and 10 GHz, and voltages varying from 0 to À5 V. Our model predicts the capacitances in all cases with relative errors smaller than 10%.
Hyperspectral (HS) imaging presents itself as a non-contact, non-ionizing and non-invasive technique, proven to be suitable for medical diagnosis. However, the volume of information contained in these images makes difficult providing the surgeon with information about the boundaries in real-time.To that end, High-Performance-Computing (HPC) platforms become necessary. This paper presents a comparison between the performances provided by five different HPC platforms while processing a spatialspectral approach to classify HS images, assessing their main benefits and drawbacks. To provide a complete study, two different medical applications, with two different requirements, have been analyzed. The first application consists of HS images taken from neurosurgical operations; the second one presents HS images taken from dermatological interventions. While the main constraint for neurosurgical applications is the processing time, in other environments, as the dermatological one, other requirements can be considered. In that sense, energy efficiency is becoming a major challenge, since this kind of applications are usually developed as hand-held devices, thus depending on the battery capacity. These requirements have been considered to choose the target platforms: on the one hand, three of the most powerful Graphic Processing Units (GPUs) available in the market; and, on the other hand, a low-power GPU and a manycore architecture, both specifically thought for being used in battery-dependent environments.INDEX TERMS Hyperspectral imaging, high performance computing, parallel processing, parallel architectures, image processing, biomedical engineering, medical diagnostic imaging, cancer detection, supervised classification, support vector machines, K-nearest neighbors, principal component analysis, graphic processing unit, manycore.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.