The effect of high concentration, also referred to as crowding conditions, on Brownian motion is of central relevance for the understanding of the physical, chemical and biological properties of proteins in their native environment. Specifically, the simple inverse relationship between the translational diffusion coefficient and the macroscopic solution viscosity as predicted by the generalized Stokes-Einstein (GSE) relation has been the subject of many studies, yet a consensus on its applicability has not been reached. Here, we use isotope-filtered pulsed-field gradient NMR to separately assess the μm-scale diffusivity of two proteins, BSA and an SH3 domain, in mixtures as well as single-protein solutions, and demonstrate that transient binding can account for an apparent violation of the GSE relation. Whereas GSE behavior applies for the single-protein solutions, it does not hold for the protein mixtures. Transient binding behavior in the concentrated mixtures is evidenced by calorimetric experiments and by a significantly increased apparent activation energy of diffusion. In contrast, the temperature dependence of the viscosity, as well as of the diffusivity in single-component solutions, is always dominated by the flow activation energy of pure water. As a practically relevant second result, we further show that, for high protein concentrations, the diffusion of small molecules such as dioxane or water is not generally a suitable probe for the viscosity experienced by the diffusing proteins.
ABSTRACTTo study the impact of nutritional factors on protein expression of intestinal bacteria, gnotobiotic mice monoassociated withEscherichia coliK-12 were fed three different diets: a diet rich in starch, a diet rich in nondigestible lactose, and a diet rich in casein. Two-dimensional gel electrophoresis and electrospray-tandem mass spectrometry were used to identify differentially expressed proteins of bacteria recovered from small intestine and cecum. Oxidative stress response proteins such as AhpF, Dps, and Fur, all of which belong to the oxyR regulon, were upregulated inE. coliisolates from mice fed the lactose-rich diet. Luciferase reporter gene assays demonstrated that osmotic stress caused by carbohydrates led to the expression ofahpCFanddps, which was not observed in anE. coliΔoxyRmutant. Growth ofahpCFandoxyRdeletion mutants was strongly impaired when nondigestible sucrose was present in the medium. The wild-type phenotype could be restored by complementation of the deletions with plasmids containing the corresponding genes and promoters. The results indicate that some OxyR-dependent proteins play a major role in the adaptation ofE. colito osmotic stress. We conclude that there is an overlap of osmotic and oxidative stress responses. Mice fed the lactose-rich diet possibly had a higher intestinal osmolality, leading to the upregulation of OxyR-dependent proteins, which enable intestinalE. colito better cope with diet-induced osmotic stress.
Poly-E-caprolactam (Nylon-6) wurde direkt in der Ionenquelle eines Massenspektrometers pyrolysiert. Bereits bei Temperaturen unterhalb 100°C beginnen dabei die im Polymeren enthaltenen cyclischen Oligomeren im Hochvakuum zu verdampfen und konnen massenspektrometrisch ohne vorherige Isolierung identifEiert werden. Bei Temperaturen oberhalb 390°C wird unter den genannten Bedingungen das Einsetzen eines intensiven thermischen Abbaus beobachtet, und es kann gezeigt werden, daD hierbei iiberwiegend cyclische Oligomere des Caprolactams gebildet werden.
SUMMARY:Poly-E-caprolactam had been pyrolyzed directly in the ion source of a mass spectrometer. Already at temperatures below 100°C cyclic oligomers present in the polymer begin to evaporate in the high vacuum and can be identified mass spectrometrically without previous isolation. At temperatures above 390°C the start of an intensive thermal degradation is observed under the described conditions, and it can be shown that mainly cyclic oligomers of caprolactam are produced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.