We demonstrate a tunable bandgap from 2.32 eV to 2.09 eV in phase-pure BiFeO3 by controlling the particle size from 65 nm to 5 nm. Defect states due to oxygen and microstrain show a strong dependence on BiFeO3 particle size and have a significant effect on the shape of absorbance curves. Oxygen-defect induced microstrain and undercoordinated oxygen on the surface of BiFeO3 nanoparticles are demonstrated via HRTEM and XPS studies. Microstrain in the lattice leads to the reduction in rhombohedral distortion of BiFeO3 for particle sizes below 30 nm. The decrease in band gap with decreasing particle size is attributed to the competing effects of microstrain, oxygen defects, and Coulombic interactions.
The ferrimagnetic spinel oxide ZnxFe3−xO4 combines high Curie temperature and spin polarization with tunable electrical and magnetic properties, making it a promising functional material for spintronic devices. We have grown epitaxial ZnxFe3−xO4 thin films (0 ≤ x ≤ 0.9) on MgO(001) substrates with excellent structural properties both in pure Ar atmosphere and an Ar/O2 mixture by laser molecular beam epitaxy and systematically studied their structural, magnetotransport and magnetic properties. We find that the electrical conductivity and the saturation magnetization can be tuned over a wide range (10 2 . . . 10 4 Ω −1 m −1 and 1.0 . . . 3.2 µB/f.u. at room temperature) by Zn substitution and/or finite oxygen partial pressure during growth. Our extensive characterization of the films provides a clear picture of the underlying physics of the spinel ferrimagnet ZnxFe3−xO4 with antiparallel Fe moments on the A and B sublattice: (i) Zn substitution removes both Fe 3+ A moments from the A sublattice and itinerant charge carriers from the B sublattice, (ii) growth in finite oxygen partial pressure generates Fe vacancies on the B sublattice also removing itinerant charge carriers, and (iii) application of both Zn substitution and excess oxygen results in a compensation effect as Zn substitution partially removes the Fe vacancies. Both electrical conduction and magnetism is determined by the density and hopping amplitude of the itinerant charge carriers on the B sublattice, providing electrical conduction and ferromagnetic double exchange between the mixed-valent Fe
ZnO is a unique material that offers about a dozen different application possibilities. In spite of the fact that the ZnO lattice is amenable to metal ion doping (3d and 4f), the physics of doping in ZnO is not completely understood. This paper presents a review of previous research works on ZnO and also highlights results of our research activities on ZnO. The review pertains to the work on Al and Mg doping for conductivity and band gap tuning in ZnO followed by a report on transition metal (TM) ion doped ZnO. This review also highlights the work on the transport and optical studies of TM ion doped ZnO, nanostructured growth (ZnO polycrystalline and thin films) by different methods and the formation of unique nano- and microstructures obtained by pulsed laser deposition and chemical methods. This is followed by results on ZnO encapsulated Fe3O4 nanoparticles that show promising trends suitable for various applications. We have also reviewed the non-linear characteristic studies of ZnO based heterostructures followed by an analysis on the work carried out on ZnO based phosphors, which include mainly the nanocrystalline ZnO encapsulated SiO2, a new class of phosphor that is suitable for white light emission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.