Gene content is the number of copies of a particular allele in a genotype of an animal. Gene content can be used to study additive gene action of candidate gene. Usually genotype data are available only for a part of population and for the rest gene contents have to be calculated based on typed relatives. Methods to calculate expected gene content for animals on large complex pedigrees are relatively complex. In this paper we proposed a practical method to calculate gene content using a linear regression. The method does not estimate genotype probabilities but these can be approximated from gene content assuming Hardy-Weinberg proportions. The approach was compared with other methods on multiple simulated data sets for real bovine pedigrees of 1 082 and 907 903 animals. Different allelic frequencies (0.4 and 0.2) and proportions of the missing genotypes (90, 70, and 50%) were considered in simulation. The simulation showed that the proposed method has similar capability to predict gene content as the iterative peeling method, however it requires less time and can be more practical for large pedigrees. The method was also applied to real data on the bovine myostatin locus on a large dual-purpose Belgian Blue pedigree of 235 133 animals. It was demonstrated that the proposed method can be easily adapted for particular pedigrees.
A missense G-A SNP in the porcine melanocortin-4 receptor (MC4R) gene that causes an Asp-Asn substitution at position 298 of the corresponding MC4R protein is considered to be economically important, although published results on its effect are inconsistent. We analysed the association of this MC4R polymorphism with production traits in 679 gilts from two breeds, Polish Large White (PLW) and Polish Landrace (PL), as well as one synthetic line 990. The frequency of the A allele differed significantly among the breeds with frequencies of 0.76, 0.29 and 0.16 in PLW, PL and line 990 respectively. There was no evidence of an effect of this polymorphism on daily food intake, backfat thickness or abdominal fat. The A allele was correlated with higher test daily gains and lower levels of intramuscular fat in PL, and increased levels of intramuscular fat in PLW.
To estimate and to use the effects of single genes on quantitative traits, genotypes need to be known. However, in large animal populations, the majority of animals are not genotyped. These missing genotypes have to be estimated. However, currently used methods are impractical for large pedigrees. An alternative method to estimate missing gene content, defined as the number of copies of a particular allele, was recently developed. In this study, the proposed method was tested by assessing its accuracy in estimation and use of gene content in large animal populations. This was done for the bovine transmembrane growth hormone receptor and its effects on first-lactation milk, fat, and protein test-day yields and somatic cell score in Holstein cows. Estimated gene substitution effects of replacing a copy of the phenylalanine-coding allele with a copy of the tyrosine-coding allele were 295 g/d for milk, −8.14 g/d for fat, −1.83 g/d for protein, and −0.022/ d for somatic cell score. However, only the gene substitution effect for milk was found to be significant. The accuracy of the estimated effects was evaluated by simulations and permutations. To validate the use of predicted gene content in a mixed inheritance model, a cross-validation study was done. The model with an additional regression of milk, fat, and protein yields and SCS on predicted gene content showed a better capacity to predict breeding values for milk, fat, and protein. Given these results, the estimation and use of allelic effects using this method proved functional and accurate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.