Graphical abstract:Graphical Abstract: 100 µm Diacid-based crosslinking CHA coating 100 µm
Abstract:One of the limitations of electrospun collagen as bone-like fibrous structure is the potential collagen triple helix denaturation in the fibre state and the corresponding inadequate wet stability even after crosslinking. Here, we have demonstrated the feasibility of accomplishing wet-stable fibres by wet spinning and diacid-based crosslinking of collagen triple helices, whereby fibre ability to act as bone-mimicking mineralisation system has also been explored.Circular dichroism (CD) demonstrated nearly complete triple helix retention in resulting wetspun fibres, and the corresponding chemically crosslinked fibres successfully preserved their fibrous morphology following 1-week incubation in phosphate buffer solution (PBS). The presented novel diacid-based crosslinking route imparted superior tensile modulus and strength to the resulting fibres indicating that covalent functionalization of distant collagen molecules is unlikely to be accomplished by current state-of-the-art carbodiimide-based crosslinking. To mimic the constituents of natural bone extra cellular matrix (ECM), the crosslinked fibres were coated with carbonated hydroxyapatite (CHA) through biomimetic precipitation, resulting in an attractive biomaterial for guided bone regeneration (GBR), e.g. in bony defects of the maxillofacial region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.