This work aims at studying the influence of adding splitter blades on the performance of a hydraulic centrifugal pump. The studied machine is an ENSIVAL-MORET MP 250.200.400 pump (diameter = 408 mm, 5 blades, specific speed = 32), whose impeller is designed with and without splitter blades. Velocity and pressure fields are computed using unsteady Reynolds-averaged NavierStokes (URANS) approach at different flow rates. The sliding mesh method is used to model the rotor zone motion in order to simulate the impeller-volute casing interaction. The flow morphology analysis shows that, when adding splitter blades to the impeller, the impeller periphery velocities and pressures become more homogeneous. An evaluation of the static pressure values all around the impeller is performed and their integration leads to the radial thrust. Global and local experimental validations are carried out at the rotating speed of 900 rpm, for both the original and the splitter blade impellers. The head is evaluated at various flow rates: 50%, 80%, 100%, and 120% of the flow rate at the best efficiency point (BEP). The pressure fluctuations are measured at four locations at the BEP using dynamic pressure sensors. The experimental results match the numerical predictions, so that the effect of adding splitter blades on the pump is acknowledged. Adding splitters has a positive effect on the pressure fluctuations which decrease at the canal duct.
In the current work, computational fluid dynamics (CFD) technique coupled with experimental investigations has been used in order to study the complex phenomena related to the unsteady flow in a centrifugal fan.The studied phenomena are the interactions and unsteadiness induced by the rotating blades motion relatively to the volute and their impact on the aeroacoustic behaviour of the fan. Thus, three-dimensional and two-dimensional unsteady simulations have been carried out using unsteady Reynolds averaged Navier-Stokes approach. Turbulence has been modelled with the k-ω-shear stress model and a sliding mesh technique has been applied to the interfaces in order to allow unsteady interactions between the rotating (impeller) and the stationary zones (volute casing). The overall performances predicted by the computations have been validated at different flowrates.In order to locate the flow unsteadiness and perturbations, the near field wall pressure fluctuations at different strategic points on the volute surface have been computed. In addition to this, the unsteady flow variables provided by the CFD calculations have been used as inputs in the Ffowcs Williams-Hawkings equation in order to estimate the tonal noise generated by the centrifugal fan. Finally, the numerical results have been compared with the experimental measurements and a correlation between the wall pressure fluctuations and the far field noise signals has been found. fields provides efficient tool for analysis and design. Thus, flow analysis techniques using unsteady Reynolds averaged Navier-Stokes (URANS) approach have made remarkable progress in several engineering applications.Recently, more attention has been paid to the study of unsteady phenomena in turbomachines. These phenomena are the interactions and unsteadiness induced by the relative motion of the rotor with respect to the stator.As concerns centrifugal fans, Liu et al.[1] used three-dimensional numerical simulations of the complete unsteady flow field to obtain the aerodynamic sound sources. In their study, the aerodynamic sound is calculated using the Lowson equation [2]. Using this technique, they showed the effect of the distance between the impeller tip and the volute tongue on JPE445
The aim of this study is to evaluate the influence of design parameters on the unsteady flow in a forward-curved centrifugal fan and their impact on the aeroacoustic behavior. To do so, numerical and experimental studies have been carried out on four centrifugal impellers designed with various geometrical parameters. The same volute casing has been used to study these impellers. The effects on the unsteady flow behavior related to irregular blade spacing, blade count and radial distance between the impeller periphery and the volute tongue have been studied. The numerical simulations of the unsteady flow have been carried out using computational fluid dynamics (CFD) tools based on the unsteady Reynolds averaged Navier Stokes (URANS) approach. The study is focused on the unsteadiness induced by the aerodynamic interaction between the volute and the rotating impeller blades. In order to predict the acoustic pressure at far field, the unsteady flow variables provided by the CFD calculations have been used as inputs in the Ffowcs Williams-Hawkings equations (FW-H). The experimental part of this work concerns measurement of aerodynamic performance of the fans using a test bench built according to ISO 5801 (1997) standard. In addition to this, pressure microphones have been flush mounted on the volute tongue surface in order to measure the wall pressure fluctuations. The sound pressure level (SPL) measurements have been carried out in an anechoic room in order to remove undesired noise reflections. Finally, the numerical results have been compared with the experimental measurements and a correlation between the wall pressure fluctuations and the far field noise signals has been found.
The objective of this paper is the study and the analysis of the complex phenomena related to the internal flow in a centrifugal fan, using Computational Fluid Dynamics (CFD) tools, completed with experimental investigation in order to validate the used numerical models. The CFD analysis concerns 2D and 3D unsteady flow. The studied phenomena are the interactions and unsteadiness induced by the motion of the rotating blades relatively to the volute and their impact on the aeroacoustic behavior of the fan. Thus, 3D and 2D unsteady calculations using Unsteady Reynolds Averaged Navier Stokes (URANS) approach has been applied on a hybrid mesh grid whose refinement has been studied and adapted to the flow morphology. Turbulence has been modeled with the k-ω-Shear Stress Model (SST) model. The computational domain has been divided into two zones, a rotating zone including the impeller and stationary zone including the volute. A sliding mesh technique has been applied to the interfaces in order to allow the unsteady interactions between the two zones. The overall performances predicted by the computations have been validated at different flow rate. For each geometry modeling (2D and 3D), the unsteady part of the study is illustrated by analyzing the pressure fluctuations on different points from the lateral surface of the volute. The analysis of the wake generated by the rotation of the blower shows that the volute tongue is the main zone of unsteadiness and flow perturbations. In order to predict the acoustic pressures, the unsteady flow field variables provided by the CFD calculations have been used as inputs in the Ffowks Williams-Hawkings equations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.