This paper considers a problem of political economy in which a Nash equilibrium study is performed in a proposed game with restrictions where the two major parties in a country vary their position within a politically flexible framework to increase their number of voters. The model as presented fits the reality of many countries. Moreover, it avoids the uniqueness of equilibrium positions. The problem is stated and solved from a geometric point of view.
Spatial models of two-player competition in spaces with more than one dimensión almost never have pure-strategy Nash equilibria, and the study of the equilibrium positions, if they exist, yields a disappointing result: the two players must choose the same position to achieve equilibrium. In this work, a discrete game is proposed in which the existence of Nash equilibria is studied using a geometric argument. This includes a definition of equilibrium which is weaker than the classical one to avoid the uniqueness of the equilibrium position. As a result, a "región of equilibrium" appears, which can be located by geometric methods. In this área, the players can move around in an "almost-equilibrium" situation and do not necessarily have to adopt the same position.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.