Approaches to control basal ganglia neural activity in real-time are needed to clarify the causal role of 8-35 Hz ("beta band") oscillatory dynamics in the manifestation of Parkinson's disease (PD) motor signs. Here, we show that resonant beta oscillations evoked by electrical stimulation with precise amplitude and timing can be used to predictably suppress or amplify spontaneous beta band activity in the internal segment of the globus pallidus (GPi) in the human. Using this approach, referred to as closed-loop evoked interference deep brain stimulation (eiDBS), we could suppress or amplify frequency-specific (16-22 Hz) neural activity in a PD patient. Amplification of targeted oscillations led to an increase in the variance of motor tracking delays, supporting the hypothesis that pallidal beta oscillations are linked to motor performance. Our results highlight the utility of eiDBS to characterize the pathophysiology of PD and other brain conditions in the human and develop personalized neuromodulation therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.