The Saccharomyces cerevisiae Sir2 protein is an NAD ؉ -dependent histone deacetylase that plays a critical role in transcriptional silencing, genome stability, and longevity. A human homologue of Sir2, SIRT1, regulates the activity of the p53 tumor suppressor and inhibits apoptosis. The Sir2 deacetylation reaction generates two products: O-acetyl-ADP-ribose and nicotinamide, a precursor of nicotinic acid and a form of niacin/vitamin B 3 . We show here that nicotinamide strongly inhibits yeast silencing, increases rDNA recombination, and shortens replicative life span to that of a sir2 mutant. Nicotinamide abolishes silencing and leads to an eventual delocalization of Sir2 even in G 1 -arrested cells, demonstrating that silent heterochromatin requires continual Sir2 activity. We show that physiological concentrations of nicotinamide noncompetitively inhibit both Sir2 and SIRT1 in vitro. The degree of inhibition by nicotinamide (IC 50 < 50 M) is equal to or better than the most effective known synthetic inhibitors of this class of proteins. We propose a model whereby nicotinamide inhibits deacetylation by binding to a conserved pocket adjacent to NAD ؉ , thereby blocking NAD ؉ hydrolysis. We discuss the possibility that nicotinamide is a physiologically relevant regulator of Sir2 enzymes.Transcriptional silencing involves the heritable modification of chromatin at distinct sites in the genome. Silencing is referred to as long range repression as it is promoter nonspecific and often encompasses an entire genomic locus (1, 2). In yeast these silent regions, which are similar to the heterochromatin of higher eukaryotes, are subject to a wide variety of modifications (3). Among the best studied of these modifications is the reversible acetylation of histones (reviewed by Refs. 4 and 5).There are two types of enzymes that affect the acetylation state of histones: histone acetyltransferases and the opposing histone deacetylases (HDACs).1 Compared with more transcriptionally active areas of the genome, histones within silent regions of chromatin are known to be hypoacetylated, specifically on the NH 2 -terminal tails of core histones H3 and H4 (6). Three classes of histone deacetylases have been described and classified based on homology to yeast proteins. Proteins in class I (Rpd3-like) and class II (Hda1-like) are characterized by their sensitivity to the inhibitor trichostatin A (TSA) (7,8). Studies using this inhibitor have provided a wealth of information regarding the biochemistry and cellular function of these proteins (reviewed by Ref. 9).Yeast Sir2 is the founding member of Class III HDACs. Sir2-like deacetylases are not inhibited by TSA and have the unique characteristic of being NAD ϩ -dependent (10 -13). Proteins of this class are found in a wide array of organisms, ranging from bacteria to humans. At least two Sir2 homologues, yeast Hst2 and human SIRT2, are localized to the cytoplasm and human SIRT1, a nuclear protein, has recently been shown to target p53 for deacetylation (11,(13)(14)(15). These results i...
The use of bone grafts is the standard to treat skeletal fractures, or to replace and regenerate lost bone, as demonstrated by the large number of bone graft procedures performed worldwide. The most common of these is the autograft, however, its use can lead to complications such as pain, infection, scarring, blood loss, and donor-site morbidity. The alternative is allografts, but they lack the osteoactive capacity of autografts and carry the risk of carrying infectious agents or immune rejection. Other approaches, such as the bone graft substitutes, have focused on improving the efficacy of bone grafts or other scaffolds by incorporating bone progenitor cells and growth factors to stimulate cells. An ideal bone graft or scaffold should be made of biomaterials that imitate the structure and properties of natural bone ECM, include osteoprogenitor cells and provide all the necessary environmental cues found in natural bone. However, creating living tissue constructs that are structurally, functionally and mechanically comparable to the natural bone has been a challenge so far. This focus of this review is on the evolution of these scaffolds as bone graft substitutes in the process of recreating the bone tissue microenvironment, including biochemical and biophysical cues.
Calorie restriction (CR) extends the life span of numerous species, from yeast to rodents. Yeast Sir2 is a nicotinamide adenine dinucleotide (NAD+-dependent histone deacetylase that has been proposed to mediate the effects of CR. However, this hypothesis has been challenged by the observation that CR can extend yeast life span in the absence of Sir2. Here, we show that Sir2-independent life-span extension is mediated by Hst2, a Sir2 homolog that promotes the stability of repetitive ribosomal DNA, the same mechanism by which Sir2 extends life span. These findings demonstrate that the maintenance of DNA stability is critical for yeast life-span extension by CR and suggest that, in higher organisms, multiple members of the Sir2 family may regulate life span in response to diet.
Calorie restriction (CR) slows aging in numerous species. In the yeast Saccharomyces cerevisiae, this effect requires Sir2, a conserved NAD+-dependent deacetylase. We report that CR reduces nuclear NAD+ levels in vivo. Moreover, the activity of Sir2 and its human homologue SIRT1 are not affected by physiological alterations in the NAD+:NADH ratio. These data implicate alternate mechanisms of Sir2 regulation by CR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.