Tree-rings offer one of the few possibilities to empirically quantify and reconstruct forest growth dynamics over years to millennia. Contemporaneously with the growing scientific community employing tree-ring parameters, recent research has suggested that commonly applied sampling designs (i.e. how and which trees are selected for dendrochronological sampling) may introduce considerable biases in quantifications of forest responses to environmental change. To date, a systematic assessment of the consequences of sampling design on dendroecological and-climatological conclusions has not yet been performed. Here, we investigate potential biases by sampling a large population of trees and replicating diverse sampling designs. This is achieved by retroactively subsetting the population and specifically testing for biases emerging for climate reconstruction, growth response to climate variability, long-term growth trends, and quantification of forest productivity. We find that commonly applied sampling designs can impart systematic biases of varying magnitude to any type of tree-ring-based investigations, independent of the total number of samples considered. Quantifications of forest growth and productivity are particularly susceptible to biases, whereas growth responses to short-term climate variability are less affected by the choice of sampling design. The world's most frequently applied sampling design, focusing on dominant trees only, can bias absolute growth rates by up to 459% and trends in excess of 200%. Our findings challenge paradigms, where a subset of samples is typically considered to be representative for the entire population. The only two sampling strategies meeting the requirements for all types of investigations are the (i) sampling of all individuals within a fixed area; and (ii) fully randomized selection of trees. This result advertises the consistent implementation of a widely applicable sampling design to simultaneously reduce uncertainties in tree-ring-based quantifications of forest growth and increase the comparability of datasets beyond individual studies, investigators, laboratories, and geographical boundaries.
Tree mortality as a crucial element of natural forest dynamics is still a poorly understood process. Abrupt growth decreases are known to occur several years or decades before complete cessation of growth. Hence, identifying and linking these growth decreases to potential inciting factors such as drought and frost will improve our understanding of mortality processes. We analyzed nine Central European tree species including six coniferous species (Abies alba, Picea abies, Larix decidua, Pinus sylvestris, Pinus cembra, Pinus montana) and three broadleaved species (Fagus sylvatica, Quercus spp., Acer pseudoplatanus). Tree-ring data from 848 standing dead trees from 14 forest reserves all over Switzerland were sampled. We applied distributed lag non-linear models to relate abrupt growth decreases to drought and frost. The results indicate for many species that both drought and frost have a moderate to major impact on abrupt growth decreases prior to tree death. While late frost in spring may instantaneously result in sustained abrupt growth decreases in most species except Scots pine and mountain pine, severe drought over several months in spring may either show an immediate negative impact on growth, such as in beech, or feature negative reactions that are lagged by several years, such as in oak and Scots pine. Thus, extreme climatic conditions have an essential influence on abrupt growth decreases that finally result in tree death, although variability of the reactions within and among species is high.
Drought entails important effects on tree physiology, which may result in short‐ to long‐term radial growth decreases. While the majority of studies have focused on annual drought‐related variability of growth, relatively little is known about sustained growth decreases following drought years. We apply a statistical framework to identify climatic factors that induce abrupt growth decreases and may eventually result in tree mortality. We used tree‐ring data from almost 500 standing dead trees and 200 living trees in eight sites of the Swiss network of strict forest reserves, including four of the most important Central European tree species (Abies alba, Picea abies, Fagus sylvatica and Quercus spp.). First, to assess short‐term growth responses to drought under various climate and site conditions, we calculated correlations and linear mixed‐effects models between ring‐width indices (RWIs) and drought based on the Standardized Precipitation Evapotranspiration Index (SPEI). Second, to quantify drought effects on abrupt growth decreases, we applied distributed lag nonlinear models (DLNMs), which account for both delayed effects and the nonlinear relationship between the SPEI and the occurrence of abrupt growth decreases. Positive correlations between RWIs and the SPEI indicated short‐term growth responses of all species, particularly at arid sites. Results of the DLNMs revealed species‐specific growth responses to drought. For Quercus spp., abrupt growth decreases were more likely to occur several years following severe drought, whereas for P. abies, A. alba, and F. sylvatica abrupt growth decreases started frequently immediately in the drought year. We conclude that the statistical framework allows for quantifying the effects of drought intensity on the probability of abrupt growth decreases, which ultimately contributes to an improved understanding of climate impacts on forest community dynamics.
Key messageTree growth shows a non-linear response to temperature. Under climate change, this leads to a consistent increase of high basal area increments only at the highest elevations. Abstract Forest dynamics and particularly tree growth rates are considerably affected by temperature. Hence, global warming is expected to have large impacts on the growth and distribution of trees, especially at the cold distribution limit. While the influence of interannual temperature variability on tree growth has been described intensely, only few studies have analyzed how growth rates of trees decline along a fine-scale temperature gradient close to treeline. We compiled temporally and spatially highly resolved long-term air and soil temperature variables (degree-day sum, growing season length, and growing season mean temperature) at three study sites comprising nine elevation gradients in the Swiss Alps. These temperature variables were paired with basal area increment data of the four major treeline species growing along these transects. Close to treeline, basal area increment of all species depended primarily on degree-day sums or growing season length, rather than on growing season mean temperature. While basal area increment was best explained by combining air temperature of the current and previous growing seasons, the importance of soil temperature for tree growth was site-specific. When moving down from upper treeline, the temperature-growth relationship was strongly non-linear, showing a rapid decrease of temperature limitation and an increasing importance of factors other than temperature. Over the last 50 years, temperatures have increased substantially at all sites, with isotherms moving upward 160-260 m in elevation. The threshold dependence of growth to temperature that we identified has led to an increase of high basal area increments over time, which, however, was consistent throughout the population only at the highest elevations. KeywordsClimate change • Treeline • Growth trends • Dendroecology • Growth increase • Transects • Temperature-tree growth relationship • Degree-day sums Communicated by E. Liang.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.