Protein aggregation is of great concern to pharmaceutical formulations and has been implicated in several diseases. We engineered an anti-IL-13 monoclonal antibody CNTO607 for improved solubility. Three structure-based engineering approaches were employed in this study: (i) modifying the isoelectric point (pI), (ii) decreasing the overall surface hydrophobicity and (iii) re-introducing an N-linked carbohydrate moiety within a complementarity-determining region (CDR) sequence. A mutant was identified with a modified pI that had a 2-fold improvement in solubility while retaining the binding affinity to IL-13. Several mutants with decreased overall surface hydrophobicity also showed moderately improved solubility while maintaining a similar antigen affinity. Structural studies combined with mutagenesis data identified an aggregation 'hot spot' in heavy-chain CDR3 (H-CDR3) that contains three residues ((99)FHW(100a)). The same residues, however, were found to be essential for high affinity binding to IL-13. On the basis of the spatial proximity and germline sequence, we reintroduced the consensus N-glycosylation site in H-CDR2 which was found in the original antibody, anticipating that the carbohydrate moiety would shield the aggregation 'hot spot' in H-CDR3 while not interfering with antigen binding. Peptide mapping and mass spectrometric analysis revealed that the N-glycosylation site was generally occupied. This variant showed greatly improved solubility and bound to IL-13 with affinity similar to CNTO607 without the N-linked carbohydrate. All three engineering approaches led to improved solubility and adding an N-linked carbohydrate to the CDR was the most effective route for enhancing the solubility of CNTO607.
Identification of asparagine (Asn) sites that are prone to deamidation is critical for the development of therapeutic monoclonal antibodies (mAbs). Despite a common chemical degradation pathway, the rates of Asn deamidation can vary dramatically among different sites, and prediction of the sensitive deamidation sites is still challenging. In this study, characterization of Asn deamidation for five IgG1 and five IgG4 mAbs under both normal and stressed conditions revealed dramatic differences in the Asn deamidation rates. A comprehensive analysis of the deamidation sites indicated that the deamidation rate differences could be explained by differences in the local structure conformation, structure flexibility and solvent accessibility. A decision tree was developed to predict the deamidation propensity for all Asn sites in IgG mAbs based on the analysis of these three structural parameters. This decision tree will allow potential Asn deamidation hot spots to be identified early in development.
As Open Science picks up momentum among scientists and policymakers, the question of how and why Open Science should be practiced continues to be subject of debate. The textbook definition of Open Science refers to the set of practices designed to open up and increase participation across the scientific lifecycle, in order to provide greater accessibility to scientific knowledge, promote the development of alternative impact metrics and the use of collaborative research infrastructures, among other characteristics (Bartling, S.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.