Photosynthetic light harvesting in plants is regulated in response to changes in incident light intensity. Absorption of light that exceeds a plant's capacity for fixation of CO2 results in thermal dissipation of excitation energy in the pigment antenna of photosystem II by a poorly understood mechanism. This regulatory process, termed nonphotochemical quenching, maintains the balance between dissipation and utilization of light energy to minimize generation of oxidizing molecules, thereby protecting the plant against photo-oxidative damage. To identify specific proteins that are involved in nonphotochemical quenching, we have isolated mutants of Arabidopsis thaliana that cannot dissipate excess absorbed light energy. Here we show that the gene encoding PsbS, an intrinsic chlorophyll-binding protein of photosystem II, is necessary for nonphotochemical quenching but not for efficient light harvesting and photosynthesis. These results indicate that PsbS may be the site for nonphotochemical quenching, a finding that has implications for the functional evolution of pigment-binding proteins.
The human gut contains a dense, complex and diverse microbial community, comprising the gut microbiome. Metagenomics has recently revealed the composition of genes in the gut microbiome, but provides no direct information about which genes are expressed or functioning. Therefore, our goal was to develop a novel approach to directly identify microbial proteins in fecal samples to gain information about the genes expressed and about key microbial functions in the human gut. We used a non-targeted, shotgun mass spectrometry-based whole community proteomics, or metaproteomics, approach for the first deep proteome measurements of thousands of proteins in human fecal samples, thus demonstrating this approach on the most complex sample type to date. The resulting metaproteomes had a skewed distribution relative to the metagenome, with more proteins for translation, energy production and carbohydrate metabolism when compared to what was earlier predicted from metagenomics. Human proteins, including antimicrobial peptides, were also identified, providing a non-targeted glimpse of the host response to the microbiota. Several unknown proteins represented previously undescribed microbial pathways or host immune responses, revealing a novel complex interplay between the human host and its associated microbes.
AND KEY WORDSLarge inter-individual variation in the composition of the intestinal microbiota between unrelated individuals has made it challenging to identify specific aspects of dysbiosis that lead to Crohn's disease. To reduce variations in exposure during establishment of the gut flora and influence of genotype, we studied the mucosaassociated microbiota of monozygotic twin pairs that were discordant (n=6) or concordant (n=4) for Crohn's disease. DNA was extracted from biopsies collected from 5 locations between the ileum and rectum. Bacterial 16S ribosomal RNA genes were amplified and community composition assessed by terminal-restriction fragment length polymorphism, cloning and sequencing and quantitative real-time PCR. The microbial compositions at all biopsy locations for each individual were similar, regardless of disease state, but there were differences between individuals. In particular, individuals with predominantly ileal Crohn's had a dramatically lower abundance (P<0.001) of Faecalibacterium prausnitzii and increased abundance (P<0.03) of Escherichia coli compared to healthy co-twins and those with Crohn's localized in the colon. This dysbiosis was significantly correlated to the disease phenotype rather than genotype. The reduced abundance of F. prausnitzii and increased abundance of E. coli are indicative of an ileal Crohn's disease phenotype, distinct from colonic Crohn's disease and the relative abundances of these specific bacterial populations are promising biomarker candidates for differential diagnosis of Crohn's and eventually customized treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.