In this paper, a bivariate power Lomax distribution based on Farlie-Gumbel-Morgenstern (FGM) copulas and univariate power Lomax distribution is proposed, which is referred to as BFGMPLx. It is a significant lifetime distribution for modeling bivariate lifetime data. The statistical properties of the proposed distribution, such as conditional distributions, conditional expectations, marginal distributions, moment-generating functions, product moments, positive quadrant dependence property, and Pearson’s correlation, have been studied. The reliability measures, such as the survival function, hazard rate function, mean residual life function, and vitality function, have also been discussed. The parameters of the model can be estimated through maximum likelihood and Bayesian estimation. Additionally, asymptotic confidence intervals and credible intervals of Bayesian’s highest posterior density are computed for the parameter model. Monte Carlo simulation analysis is used to estimate both the maximum likelihood and Bayesian estimators.
In survival analyses, infections at the catheter insertion site among kidney patients using portable dialysis machines pose a significant concern. Understanding the bivariate infection recurrence process is crucial for healthcare professionals to make informed decisions regarding infection management protocols. This knowledge enables the optimization of treatment strategies, reduction in complications associated with infection recurrence and improvement of patient outcomes. By analyzing the bivariate infection recurrence process in kidney patients undergoing portable dialysis, it becomes possible to predict the probability, timing, risk factors and treatment outcomes of infection recurrences. This information aids in identifying the likelihood of future infections, recognizing high-risk patients in need of close monitoring, and guiding the selection of appropriate treatment approaches. Limited bivariate distribution functions pose challenges in jointly modeling inter-correlated time between recurrences with different univariate marginal distributions. To address this, a Copula-based methodology is presented in this study. The methodology introduces the Kavya–Manoharan transformation family as the lifetime model for experimental units. The new bivariate models accurately measure dependence, demonstrate significant properties, and include special sub-models that leverage exponential, Weibull, and Pareto distributions as baseline distributions. Point and interval estimation techniques, such as maximum likelihood and Bayesian methods, where Bayesian estimation outperforms maximum likelihood estimation, are employed, and bootstrap confidence intervals are calculated. Numerical analysis is performed using the Markov chain Monte Carlo method. The proposed methodology’s applicability is demonstrated through the analysis of two real-world data-sets. The first data-set, focusing on infection and recurrence time in kidney patients, indicates that the Farlie–Gumbel–Morgenstern bivariate Kavya–Manoharan–Weibull (FGMBKM-W) distribution is the best bivariate model to fit the kidney infection data-set. The second data-set, specifically that related to UEFA Champions League Scores, reveals that the Clayton Kavya–Manoharan–Weibull (CBKM-W) distribution is the most suitable bivariate model for fitting the UEFA Champions League Scores. This analysis involves examining the time elapsed since the first goal kicks and the home team’s initial goal.
<abstract><p>This paper presents a novel family of bivariate continuous Lomax generators known as the BFGMLG family, which is constructed using univariate Lomax generator (LG) families and the Farlie Gumbel Morgenstern (FGM) copula. We have derived several structural statistical properties of our proposed bivariate family, such as marginals, conditional distribution, conditional expectation, product moments, moment generating function, correlation, reliability function, and hazard rate function. The paper also introduces four special submodels of the new family based on the Weibull, exponential, Pareto, and log-logistic baseline distributions. The study establishes metrics for local dependency and examines the significant characteristics of the proposed bivariate model. To provide greater flexibility, a multivariate version of the continuous FGMLG family are suggested. Bayesian and maximum likelihood methods are employed to estimate the model parameters, and a Monte Carlo simulation evaluates the performance of the proposed bivariate family. Finally, the practical application of the proposed bivariate family is demonstrated through the analysis of four data sets.</p></abstract>
One of the important features of generalized distribution is its ability and flexibility to model real-life data in several applied fields such as medicine, engineering, and survival analysis, among others. In this paper, a flexible four-parameter Lomax extension called the alpha-power power-Lomax (APPLx) distribution is introduced. The APPLx distribution is analytically tractable, and it can be used quite effectively for real-life data analysis. Key mathematical properties of the APPLx distribution including mode, moments, stress-strength reliability, quantile and generating functions, and order statistics are presented. The APPEx parameters are estimated by using eight classical estimation methods. Extensive simulation studies are provided to explore the performance of the proposed estimation methods and to provide a guideline for practitioners and engineers to choose the best estimation method. Three real-life datasets from applied fields are fitted to assess empirically the flexibility of the APPLx distribution. The APPLx distribution shows greater flexibility as compared to the McDonal–Lomax, Fréchet Topp–Leone Lomax, transmuted Weibull–Lomax, Kumaraswamy–Lomax, beta exponentiated-Lomax, Weibull–Lomax, Burr-X Lomax, Lomax–Weibull, odd exponentiated half-logistic Lomax, and alpha-power Lomax distributions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.