In the presence of plant uncertainties, utilizing an appropriate controller for a smooth output tracking and elimination of high-frequency disturbances, especially in accurate systems is very important. In this paper, a controller is proposed based on the robust and optimal theory to achieve a combination of such characteristics in the face of model parameter variations and unknown disturbances. The proposed controller has been simulated on a three-axis gyro-stabilized MIMO platform and comparison results with a NLPID controller simulation are provided.
The reliability of an intelligent self tuning controller called the brain emotional learning based intelligent controller (BELBIC) to attitude control of a nonlinear launch vehicle (LV) simulation with hardware-in-the loop simulation (HILS) is studied. To set up the HIL system of the LV a six-degree of freedom simulation of the LV and a hydraulic actuator, which was used for the pitch channel thrust vector control (TVC) actuator of the LV, is performed. The results of the BELBIC controller with a fuzzy controller (FC) and a PID controller in this HILS of the LV to control the pitch channel of the LV have been compared.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.