There is much interest in designing molecular sized containers that influence and facilitate chemical reactions within their nanocavities. On top of the advantages of improved yield and selectivity, the studies of reactions in confinement also give important clues that extend our basic understanding of chemical processes. We report here, the synthesis and self-assembly of an expanded bis-urea macrocycle to give crystals with columnar channels. Constructed from two C-shaped phenylethynylene units and two urea groups, the macrocycle affords a large pore with a diameter of ∼9 Å. Despite its increased size, the macrocycles assemble into columns with high fidelity to afford porous crystals. The porosity and accessibility of these channels have been demonstrated by gas adsorption studies and by the uptake of coumarin to afford solid inclusion complexes. Upon UV-irradiation, these inclusion complexes facilitate the conversion of coumarin to its anti-head-to-head (HH) photodimer with high selectivity. This is contrary to what is observed upon the solid-state irradiation of coumarin, which affords photodimers with low selectivity and conversion.
We report herein the characterization and binding properties of a microporous crystalline host formed by the self assembly of a bis-urea macrocycle 1. Bis-urea macrocycle 1 has been designed to crystallize into stacked hollow columns. The self-assembly process is guided primarily by hydrogen bonding and aromatic stacking interactions that yield crystals of filled host 1‚acetic acid (AcOH). The AcOH guests are bound in the cylindrical cavities of the crystal. The guest AcOH can be removed by heating to form a stable crystalline apohost 1. Apohost 1 displays a type I gas adsorption isotherm with CO 2 that is consistent with an open framework microporous material. Apohost 1 binds a range of small molecule guests with specific stoichiometry. The formation of these inclusion complexes does not destroy the crystal framework and therefore apohost 1 can be reused, much like a zeolite. We investigated the structure of apohost 1 and its inclusion complexes by powder X-ray diffraction. The ability of guests to bind and their stoichiometry could be rationalized on the basis of the size, shape, and polarity of the guest molecules. Finally, the shape selectivity of these self-assembled porous materials was demonstrated in competition studies in which apohost 1 preferentially bound p-xylene from a mixture of xylene isomers.
We report a highly selective 2 + 2 cycloaddition of 2-cyclohexenone in the presence of self-assembled bisurea macrocycles that yields the head-to-tail photodimer. The reaction proceeds with high conversion and with decreased incidence of secondary photorearrangement. Furthermore, the product can be extracted from the assembly, and the solid assembly is readily recovered and reused, much like a zeolite.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.