The development of energy storage devices in lead-free perovskite materials is critically important in addressing the environmental issues of perovskite lead. In this article, for the first time, lead-free (Ba0.60Sr0.40)(1−x)(Bi,Li)
x
TiO3, abbreviated as (BST6:BLx%); (0%⩽ x ⩽ 8%) ceramics, have been successively synthesized via the conventional solid-state reaction method. The structural evolution, dielectric and energy storage properties, as functions of co-doping levels, were systematically studied by x-ray diffraction, x-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy, scanning electron microscopy, impedance analyzer, and a Radiant Precision Premier II Analyzer. It was found that a small amount of co-dopants induced a colossal permittivity (CP) (over 105) with low loss (<0.1), a maximum energy storage density of 0.3856 J cm−3 with a BDS of ∼100 kV cm−1, and an efficiency of over 90%. The defects and chemical state of the elements contained in the material’s surface were investigated using XPS. In conjunction with the results of XPS and complex impedance studies, the mechanism of massive permittivity was interpreted based on a defect-dipole model. We believe that BST6:BLx% ceramics, as CP and high energy storage efficiency materials, might be considered a promising candidate for high energy storage applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.