Total hip replacements for older patients are usually cemented to ensure high postoperative primary stability. Curing temperatures vary with implant material and cement thickness (30°C to 70°C), whereas limits for the initiation of thermal bone damage are reported at 45°C to 55°C. Thus, optimizing surgical treatment and the implant material are possible approaches to lower the temperature. The aim of this study was to investigate the influence of water cooling on the temperature magnitude at the acetabulum cement interface during curing of a modular cobalt-chromium cup and a monoblock polyethylene acetabular cup. The curing temperature was measured for SAWBONE and human acetabuli at the cement-bone interface using thermocouples. Peak temperature for the uncooled condition reached 70°C for both cup materials but was reduced to below 50°C in the cooled condition for the cobalt-chromium cup (P = .027). Cooling is an effective method to reduce curing temperature with metal implants, thereby avoiding the risk of thermal bone damage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.