Trehalose is a promising natural cryoprotectant, but its cryoprotective effect is limited due to difficulties in transmembrane transport. Thus, expressing the trehalose transporter TRET1 on various mammalian cells may yield more trehalose applications. In this study, we ran comparative cryopreservation experiments between the TRET1-expressing CHO-K1 cells (CHO-TRET1) and the CHO-K1 cells transfected with an empty vector (CHO-vector). The experiments involve freezing under various trehalose concentrations in an extracellular medium. The freeze-thawing viabilities of CHO-TRET1 cells are higher than those of CHO-vector cells for most freezing conditions. This result differs from control experiments with a transmembrane type cryoprotectant, dimethyl sulfoxide (MeSO), which had similar viabilities in each condition for both cell types. We conclude that the trehalose loaded into the cells with TRET1 significantly improves the cryoprotective effect. The higher viabilities occurred when the extracellular trehalose concentration exceeded 200 mM, with 250-500 mM being optimal, and a cooling rate below 30 K/min, with 5-20 K/min being optimal.
Abstract. Retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) are pattern-recognition receptors that recognize pathogen-associated molecular patterns and induce antiviral immune responses. Recent studies have demonstrated that RLR activation induces antitumor immunity and cytotoxicity against different types of cancer, including lung cancer. However a previous report has demonstrated that ionizing radiation exerts a limited effect on RLR in human monocytic cell-derived macrophages, suggesting that RLR agonists may be used as effective immunostimulants during radiation therapy. However, it is unclear whether ionizing radiation affects the cytotoxicity of RLR agonists against cancer cells. Therefore, in the present study the effects of cotreatment with ionizing radiation and RLR agonists on cytotoxicity against human non-small cell lung cancer cells A549 and H1299 was investigated. Treatment with RLR agonist poly(I:C)/LyoVec™ [poly(I:C)] exerted cytotoxic effects against human non-small cell lung cancer. The cytotoxic effects of poly(I:C) were enhanced by cotreatment with ionizing radiation, and poly(I:C) pretreatment resulted in the radiosensitization of non-small cell lung cancer. Furthermore, cotreatment of A549 and H1299 cells with poly(I:C) and ionizing radiation effectively induced apoptosis in a caspase-dependent manner compared with treatment with poly(I:C) or ionizing radiation alone. These results indicate that RLR agonists and ionizing radiation cotreatment effectively exert cytotoxic effects against human non-small cell lung cancer through caspase-mediated apoptosis.
In order to clarify antigenic variations among various isolates of human herpesvirus 6 (HHV-6) and cross-reactivity among HHV-6, HHV-7, and human cytomegalovirus (HCMV) in the T-cell immune response, the antigenic specificity of the proliferative response mediated by 232 CD4+ human T-cell clones directed against HHV-6, HHV-7, or HCMV was examined. The results obtained were as follows. (i) Although the majority of T-cell clones directed against HHV-6 proliferated in response to stimulation with all strains of HHV-6 used (U1102, Z29, SF, and HST), 7% (8 of 122) of the T-cell clones showed distinct patterns of proliferative response against strain U1102 (group A) and other strains of HHV-6 (group B). (ii) Of 99 T-cell clones, 71 showed a distinct proliferative response to HHV-6 and HHV-7, whereas 28 proliferated in response to stimulation with both HHV-6 and HHV-7. (iii) A small number of T-cell clones (9 of 232) showed cross-reactivity against HHIV-6 and HCMV, and 2 of the 232 clones were reactive with HCMV as well as with HHV-6 and HHV-7. (iv) The specificity of gamma interferon production by T-cell clones following the stimulation with virus antigen was identical to that of their proliferative response. These data thus indicate the presence of antigenic variations among isolates of HHV-6 and also epitopes common to HHV-6 and HHV-7 and to HHV-6, HHV-7, and HCMV which are recognized by CD4+ T cells.
Recently, data demonstrating that CD4 is an essential component of the receptor for human herpesvirus 7 (HHV-7) as well as for human immunodeficiency virus have been accumulating. Since gangliosides and phorbol esters are known to induce selective down-modulation of cell surface CD4 expression, it might be expected that treatment with these agents would interfere with HHV-7 infection of CD4 + T cells. The present study, undertaken to verify this possibility, demonstrated that addition of monosialoganglioside-GM1 or 12-O-tetradecanoylphorbol 13-acetate effectively induced disappearance of CD4 from the cell surface and also reduced HHV-7 infectivity, as judged by the CPE on virusinfected cells and studies of indirect immunofluorescence, TCID~0 and semi-quantitative PCR of the HHV-7 genome. Taken together with previous studies, the present data strongly suggest that the CD4 molecule is a critical component of the receptor for HHV-7.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.