The present paper proposes a new probabilistic neural network (NN) that can estimate a posteriori probability for a pattern classification problem. The structure of the proposed network is based on a statistical model composed by a mixture of log-linearized Gaussian components. However, the forward calculation and the backward learning rule can be defined in the same manner as the error backpropagation NN. In this paper, the proposed network is applied to the electroencephalogram (EEG) pattern classification problem. In the experiments, two types of a photic stimulation, which are caused by eye opening/closing and artificial light, are used to collect the data to be classified. It is shown that the EEG signals can be classified successfully and that the classification rates change depending on the number of training data and the dimension of the feature vectors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.