The Les Echets sediment sequence has recently been the subject of a high-resolution, multi-proxy study which revealed shifts in lake productivity linked to Greenland stadials and interstadials over the last 40 ka . Rapid ecosystem response to abrupt climate changes during the last glacial period in western Europe, 40-16 ka. Geology 36: 407-410). Here we present new elemental data for this sequence as acquired using an X-ray fluorescence core scanning system which provides in situ high-resolution, continuous, multi-element analyses. It was found that the strength of associations between the studied elements (Ti, Rb, K, Zr, Si, Ca, Sr, Mn and Fe) varied over time with changes in lake status which are ultimately driven by changes in climate. Increases in fine-grained, detrital input (as indicated by Ti, Rb, K and Zr/Rb) overlap with independently established periods of lower lake productivity and are interpreted to represent more arid conditions. Several of these arid periods are coincident with low diatom concentrations and the timing of Heinrich events H4, H3 and H2. The duration of the environmental impacts linked to the H events varied by proxy with elemental data (Ti and Zr/Rb) estimating shorter events than the diatom data. Periods of lower detrital input and coarser grain sizes agreed in time with periods of higher lake productivity. The elemental data provide new insights into hydrological changes and related sediment processes within the catchment, and highlight the need for multi-element and multi-proxy approaches when reconstructing climate change using lacustrine sediment sequences.
The phasing out of leaded gasoline in many countries around the world at the end of the last millennium has resulted in a complex mixture of lead sources in the atmosphere. Recent studies suggest that coal combustion has become an important source of Pb in aerosols in urban and remote areas. Here, we report lead concentration and isotopic composition for 59 coal samples representing major coal deposits worldwide in an attempt to characterize this potential source. The average concentration in these coals is 35 microg Pb g(-1), with the highest values in coals from Spain and Peru and the lowest in coals from Australia and North America. The 206Pb/207Pb isotope ratios range between 1.15 and 1.24, with less radiogenic Pb in coals from Europe and Asia compared to South and North America. Comparing the Pb isotopic signatures of coals from this and previous studies with those published for Northern and Southern Hemisphere aerosols, we hypothesize that coal combustion might now be an important Pb source in China, the eastern U.S., and to some extent, in Europe but not as yet in other regions including South Africa, South America, and western U.S. This supports the notion that "old Pb pollution" from leaded gasoline reemitted into the atmosphere or long-range transport (i.e., from China to the western U.S.) is important. Comparing the isotope ratios of the coals, the age of the deposits, and Pb isotope evolution models for the major geochemical reservoirs suggests that the PbIC in coals is strongly influenced by the depositional coal forming environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.