Inhaled administration of ethanol in the early stages of COVID-19 would favor its location on the initial replication sites, being able to reduce the progression of the disease and improving its prognosis. Before evaluating the efficacy and safety of this novel therapeutic strategy in humans, its characterization is required. The developed 65° ethanol formulation is stable at room temperature and protected from light for 15 days, maintaining its physicochemical and microbiological properties. Two oxygen flows have been tested for its administration (2 and 3 L/min) using an automated headspace gas chromatographic analysis technique (HS-GC-MS), with that of 2 L/min being the most appropriate one, ensuring the inhalation of an ethanol daily dose of 33.6 ± 3.6 mg/min and achieving more stable concentrations during the entire treatment (45 min). Under these conditions of administration, the formulation has proven to be safe, based on histological studies of the respiratory tracts and lungs of rats. On the other hand, these results are accompanied by the first preclinical molecular imaging study with radiolabeled ethanol administered by this route. The current ethanol formulation has received approval from the Spanish Agency of Medicines and Medical Devices for a phase II clinical trial for early-stage COVID-19 patients, which is currently in the recruitment phase (ALCOVID-19; EudraCT number: 2020-001760-29).
Biological drugs, especially those targeting anti-tumour necrosis factor α (TNFα) molecule, have revolutionized the treatment of patients with non-infectious uveitis (NIU), a sight-threatening condition characterized by ocular inflammation that can lead to severe vision threatening and blindness. Adalimumab (ADA) and infliximab (IFX), the most widely used anti-TNFα drugs, have led to greater clinical benefits, but a significant fraction of patients with NIU do not respond to these drugs. The therapeutic outcome is closely related to systemic drug levels, which are influenced by several factors such as immunogenicity, concomitant treatment with immunomodulators, and genetic factors. Therapeutic drug monitoring (TDM) of drug and anti-drug antibody (ADAbs) levels is emerging as a resource to optimise biologic therapy by personalising treatment to bring and maintain drug concentration within the therapeutic range, especially in those patients where a clinical response is less than expected. Furthermore, some studies have described different genetic polymorphisms that may act as predictors of response to treatment with anti-TNFα agents in immune-mediated diseases and could be useful in personalising biologic treatment selection. This review is a compilation of the published evidence in NIU and in other immune-mediated diseases that support the usefulness of TDM and pharmacogenetics as a tool to guide clinicians’ treatment decisions leading to better clinical outcomes. In addition, findings from preclinical and clinical studies, assessing the safety and efficacy of intravitreal administration of anti-TNFα agents in NIU are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.