In a seminal paper, Chen, Roughgarden and Valiant [7] studied cost sharing protocols for network design with the objective to implement a low-cost Steiner forest as a Nash equilibrium of an induced cost-sharing game. One of the most intriguing open problems to date is to understand the power of budget-balanced and separable cost sharing protocols in order to induce low-cost Steiner forests. In this work, we focus on undirected networks and analyze topological properties of the underlying graph so that an optimal Steiner forest can be implemented as a Nash equilibrium (by some separable cost sharing protocol) independent of the edge costs. We term a graph efficient if the above stated property holds. As our main result, we give a complete characterization of efficient undirected graphs for two-player network design games: an undirected graph is efficient if and only if it does not contain (at least) one out of few forbidden subgraphs. Our characterization implies that several graph classes are efficient: generalized series-parallel graphs, fan and wheel graphs and graphs with small cycles.
In cost-sharing games with delays, a set of agents jointly uses a subset of resources. Each resource has a fixed cost that has to be shared by the players, and each agent has a nonshareable player-specific delay for each resource. A separable cost-sharing protocol determines cost shares that are budget-balanced, separable, and guarantee existence of pure Nash equilibria (PNE). We provide black-box reductions reducing the design of such a protocol to the design of an approximation algorithm for the underlying cost-minimization problem. In this way, we obtain separable cost-sharing protocols in matroid games, single-source connection games, and connection games on n-series-parallel graphs. All these reductions are efficiently computable - given an initial allocation profile, we obtain a cheaper profile and separable cost shares turning the profile into a PNE. Hence, in these domains, any approximation algorithm yields a separable cost-sharing protocol with price of stability bounded by the approximation factor.
In cost sharing games with delays, a set of agents jointly allocates a finite subset of resources. Each resource has a fixed cost that has to be shared by the players, and each agent has a nonshareable player-specific delay for each resource. A prominent example is uncapacitated facility location (UFL), where facilities need to be opened (at a shareable cost) and clients want to connect to opened facilities. Each client pays a cost share and his non-shareable physical connection cost. Given any profile of subsets allocated by the agents, a separable cost sharing protocol determines cost shares that satisfy budget balance on every resource and separability over the resources. Moreover, a separable protocol guarantees existence of pure Nash equilibria in the induced strategic game for the agents.In this paper, we study separable cost sharing protocols in several general combinatorial domains. We provide black-box reductions to reduce the design of a separable cost-sharing protocol to the design of an approximation algorithm for the underlying cost minimization problem. In this way, we obtain new separable cost-sharing protocols in games based on arbitrary playerspecific matroids, single-source connection games without delays, and connection games on nseries-parallel graphs with delays. All these reductions are efficiently computable -given an initial allocation profile, we obtain a cheaper profile and separable cost shares turning the profile into a pure Nash equilibrium. Hence, in these domains any approximation algorithm can be used to obtain a separable cost sharing protocol with a price of stability bounded by the approximation factor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.