In this paper we describe a system for aerial manipulation composed of a helicopter platform and a fully actuated seven Degree of Freedom (DoF) redundant industrial robotic arm. We present the first analysis of such kind of systems and show that the dynamic coupling between helicopter and arm can generate diverging oscillations with very slow frequency which we called phase circles. Based on the presented analysis, we propose a control approach for the whole system. The partial decoupling between helicopter and arm-which eliminates the phase circles-is achieved by means of special movement of robotic arm utilizing its redundant DoF. For the underlying arm control a specially designed impedance controller was proposed. In different flight experiments we showcase that the proposed kind of system type might be used in the future for practically relevant tasks. In an integrated experiment we demonstrate a basic manipulation task-impedance based grasping of an object from the environment underlaying a visual object tracking control loop.
This paper is devoted to the control of aerial robots interacting physically with objects in the environment and with other aerial robots. The paper presents a controller for the particular case of a smallscaled autonomous helicopter equipped with a robotic arm for aerial manipulation. Two types of influences are imposed on the helicopter from a manipulator: coherent and non-coherent influence. In the former case, the forces and torques imposed on the helicopter by the manipulator change with frequencies close to those of the helicopter movement. The paper shows that even small interaction forces imposed on the fuselage periodically in proper phase could yield to low frequency instabilities and oscillations, so-called phase circles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.