All of the existing dopamine receptor models recognize the amine nitrogen of agonist and antagonist drugs as playing a crucial role in receptor interactions. However, there has been some controversy as to which molecular form of the amine, charged or uncharged, is most important in these interactions. We have synthesized and examined the biological activity of permanently charged and permanently uncharged analogues of the dopaminergic antagonist, sulpiride. Sulpiride and the permanently charged pyrrolidinium (6,7) and tetrahydrothiophenium (9) analogues were able to antagonize the inhibitory effect of apomorphine on the K+-induced release of [3H]acetylcholine from striatal slices. In contrast, the permanently uncharged tetrahydrothiophene analogue 8 was inactive at concentrations up to 100 microM. Additionally, both sulpiride and the tetrahydrothiophenium analogue were able to displace [3H]spiperone from D2 binding sites, while the tetrahydrothiophene analogue was unable to produce any significant displacement. These results are consistent with our previous observations on permanently charged chlorpromazine analogues and provide further evidence that dopaminergic antagonists bind in their charged molecular forms to anionic sites on the D2 receptor.
A series of permanently charged ammonium and sulfonium analogues of metoclopramide as well as a permanently uncharged sulfide analogue were synthesized and evaluated for their ability to inhibit apomorphine-induced responses on mouse striatal slices. Three of the four permanently charged analogues were found to inhibit apomorphine's effects, although at higher concentrations than either metoclopramide or its dimethyl analogue. In contrast, the sulfide analogue was inactive at concentrations up to 100 microM. These findings are consistent with earlier studies of chlorpromazine and sulpiride analogues and provide further evidence that dopamine antagonists bind in their charged molecular forms to anionic sites on the D2 receptor. Further, the results of this study in conjunction with those of our earlier sulpiride study would seem to indicate that differences in the biological profiles of metoclopramide, a type 1 benzamide useful as a gastric prokinetic agent, and sulpiride, a type 2 benzamide useful for its antipsychotic effects, are not due to any appreciable differences in the binding of the basic nitrogen atom of these molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.