Ultracold polar molecules offer strong electric dipole moments and rich internal structure, which makes them ideal building blocks to explore exotic quantum matter1–9, implement quantum information schemes10–12 and test the fundamental symmetries of nature13. Realizing their full potential requires cooling interacting molecular gases deeply into the quantum-degenerate regime. However, the intrinsically unstable collisions between molecules at short range have so far prevented direct cooling through elastic collisions to quantum degeneracy in three dimensions. Here we demonstrate evaporative cooling of a three-dimensional gas of fermionic sodium–potassium molecules to well below the Fermi temperature using microwave shielding. The molecules are protected from reaching short range with a repulsive barrier engineered by coupling rotational states with a blue-detuned circularly polarized microwave. The microwave dressing induces strong tunable dipolar interactions between the molecules, leading to high elastic collision rates that can exceed the inelastic ones by at least a factor of 460. This large elastic-to-inelastic collision ratio allows us to cool the molecular gas to 21 nanokelvin, corresponding to 0.36 times the Fermi temperature. Such cold and dense samples of polar molecules open the path to the exploration of many-body phenomena with strong dipolar interactions.
The interplay of quantum statistics and interactions in atomic Bose-Fermi mixtures leads to a phase diagram markedly different from pure fermionic or bosonic systems. However, investigating this phase diagram remains challenging when bosons condense. Here, we observe evidence for a quantum phase transition from a polaronic to a molecular phase in a density-matched degenerate Bose-Fermi mixture. The condensate fraction, representing the order parameter of the transition, is depleted by interactions and the build-up of strong correlations results in the emergence of a molecular Fermi gas. By driving through the transition, we ultimately produce a quantumdegenerate sample of sodium-potassium molecules exhibiting a large molecule-frame dipole moment of 2.7 Debye. The observed phase transition represents a new phenomenon complementary to the paradigmatic BEC-BCS crossover observed in Fermi systems.
DEGENERATE BOSE-FERMI MIXTURES IN THE DENSITY-MATCHED REGIMEA simplified phase diagram of Bose-Fermi mixtures is illustrated in Fig. 1a as a function of the ratio of boson to fermion density n B /n F and the dimensionless interaction strength 1/k i a BF . Here, a BF denotes the bosonfermion scattering length and the wave vector k i is deter-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.