Abstract. Let V be an affine toric variety of codimension r over a field of any characteristic. We completely characterize the affine toric varieties that are set-theoretic complete intersections on binomials. In particular we prove that in the characteristic zero case, V is a set-theoretic complete intersection on binomials if and only if V is a complete intersection. Moreover, if F 1 , . . . , Fr are binomials such that . . . , Fr). While in the positive characteristic p case, V is a set-theoretic complete intersection on binomials if and only if V is completely p-glued.These results improve and complete all known results on these topics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.