Abstract-This paper proposes a new probabilistic solution framework for robust control analysis and synthesis problems that can be expressed in the form of minimization of a linear objective subject to convex constraints parameterized by uncertainty terms. This includes the wide class of NP-hard control problems representable by means of parameter-dependent linear matrix inequalities (LMIs). It is shown in this paper that by appropriate sampling of the constraints one obtains a standard convex optimization problem (the scenario problem) whose solution is approximately feasible for the original (usually infinite) set of constraints, i.e., the measure of the set of original constraints that are violated by the scenario solution rapidly decreases to zero as the number of samples is increased. We provide an explicit and efficient bound on the number of samples required to attain a-priori specified levels of probabilistic guarantee of robustness. A rich family of control problems which are in general hard to solve in a deterministically robust sense is therefore amenable to polynomial-time solution, if robustness is intended in the proposed risk-adjusted sense.
Many optimization problems are naturally delivered in an uncertain framework, and one would like to exercise prudence against the uncertainty elements present in the problem. In previous contributions, it has been shown that solutions to uncertain convex programs that bear a high probability to satisfy uncertain constraints can be obtained at low computational cost through constraints randomization. In this paper, we establish new feasibility results for randomized algorithms. Specifically, the exact feasibility for the class of the so-called fully-supported problems is obtained. It turns out that all fully-supported problems share the same feasibility properties, revealing a deep kinship among problems of this class. It is further proven that the feasibility of the randomized solutions for all other convex programs can be bounded based on the feasibility for the prototype class of fully-supported problems. The feasibility result of this paper outperforms previous bounds, and is not improvable because it is exact for fully-supported problems.
Abstract. This paper considers the problem of designing a controller for an unknown plant based on input/output measurements. The new design method we propose is direct (no model identification of the plant is needed) and can be applied using a single set of data generated by the plant, with no need for specific experiments nor iterations. It is shown that the method searches for the global optimum of the design criterion and that, in the case of restricted complexity controller design, the achieved controller is a good approximation of the restricted complexity global optimal controller. A simulation example shows the effectiveness of the method.
Abstract. Many engineering problems can be cast as optimization problems subject to convex constraints that are parameterized by an uncertainty or 'instance' parameter. Two main approaches are generally available to tackle constrained optimization problems in presence of uncertainty: robust optimization and chance-constrained optimization. Robust optimization is a deterministic paradigm where one seeks a solution which simultaneously satisfies all possible constraint instances. In chance-constrained optimization a probability distribution is instead assumed on the uncertain parameters, and the constraints are enforced up to a pre-specified level of probability. Unfortunately however, both approaches lead to computationally intractable problem formulations.In this paper, we consider an alternative 'randomized' or 'scenario' approach for dealing with uncertainty in optimization, based on constraint sampling. In particular, we study the constrained optimization problem resulting by taking into account only a finite set of N constraints, chosen at random among the possible constraint instances of the uncertain problem. We show that the resulting randomized solution fails to satisfy only a small portion of the original constraints, provided that a sufficient number of samples is drawn. Our key result is to provide an efficient and explicit bound on the measure (probability or volume) of the original constraints that are possibly violated by the randomized solution. This volume rapidly decreases to zero as N is increased.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.