Improving the temporal resolution of single photon detectors has an impact on many applications 1 , such as increased data rates and transmission distances for both classical 2 and quantum 3-5 optical communication systems, higher spatial resolution in laser ranging and observation of shorter-lived fluorophores in biomedical imaging 6 . In recent years, superconducting nanowire single-photon detectors 7,8 (SNSPDs) have emerged as the highest efficiency time-resolving single-photon counting detectors available in the near infrared 9 . As the detection mechanism in SNSPDs occurs on picosecond time scales 10 , SNSPDs have been demonstrated with exquisite temporal resolution below 15 ps [11][12][13][14][15] . We reduce this value to 2.7±0.2 ps at 400 nm and 4.6±0.2 ps at 1550 nm, using a specialized niobium nitride (NbN) SNSPD. The observed photon-energy dependence of the temporal resolution and detection latency suggests that intrinsic effects make a significant contribution.Temporal resolution in SNSPDs, commonly referred to as jitter, is characterized by the width of the temporal distribution of signal outputs with respect to the photon arrival times. This statistical distribution is known as the instrument response function (IRF), and its width is commonly evaluated as
We propose the use of superconducting nanowires as both target and sensor for direct detection of sub-GeV dark matter. With excellent sensitivity to small energy deposits on electrons, and demonstrated low dark counts, such devices could be used to probe electron recoils from dark matter scattering and absorption processes. We demonstrate the feasibility of this idea using measurements of an existing fabricated tungsten-silicide nanowire prototype with 0.8-eV energy threshold and 4.3 nanograms with 10 thousand seconds of exposure, which showed no dark counts. The results from this device already place meaningful bounds on dark matter-electron interactions, including the strongest terrestrial bounds on sub-eV dark photon absorption to date. Future expected fabrication on larger scales and with lower thresholds should enable probing new territory in the direct detection landscape, establishing the complementarity of this approach to other existing proposals.
Linking superconducting quantum devices to optical fibers via microwave-optical quantum transducers may enable large-scale quantum networks. For this application, transducers based on the Pockels electro-optic (EO) effect are promising for their direct conversion mechanism, high bandwidth, and potential for low-noise operation. However, previously demonstrated EO transducers require large optical pump power to overcome weak EO coupling and reach high efficiency. Here, we create an EO transducer in thin-film lithium niobate, a platform that provides low optical loss and strong EO coupling. We demonstrate on-chip transduction efficiencies of up to and of optical pump power. The transduction efficiency can be improved by further reducing the microwave resonator’s piezoelectric coupling to acoustic modes, increasing the optical resonator quality factor to previously demonstrated levels, and changing the electrode geometry for enhanced EO coupling. We expect that with further development, EO transducers in thin-film lithium niobate can achieve near-unity efficiency with low optical pump power.
Time-and number-resolved photon detection is crucial for photonic quantum information processing. Existing photon-number-resolving (PNR) detectors usually have limited timing and dark-count performance or require complex fabrication and operation. Here we demonstrate a PNR detector at telecommunication wavelengths based on a single superconducting nanowire with an integrated impedance-matching taper. The prototyping device was able to resolve up to five absorbed photons and had 16.1 ps timing jitter, <2 c.p.s. device dark count rate, ∼86 ns reset time, and 5.6% system detection efficiency (without cavity) at 1550 nm. Its exceptional distinction between single-and two-photon responses is ideal for coincidence counting and allowed us to directly observe bunching of photon pairs from a single output port of a Hong-Ou-Mandel interferometer. This detector architecture may provide a practical solution to applications that require high timing resolution and few-photon discrimination.
We developed superconducting nanowire single-photon detectors (SNSPDs) based on tungsten silicide (WSi) that show saturated internal detection efficiency up to a wavelength of 10 µm. These detectors are promising for applications in the mid-infrared requiring ultra-high gain stability, low dark counts, and high efficiency such as chemical sensing, LIDAR, dark matter searches and exoplanet spectroscopy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.