In this study, we report on the remarkable two-photon excited fluorescence efficiency in the "biological window" of CaF(2):Tm(3+),Yb(3+) nanoparticles. On the basis of the strong Tm(3+) ion emission (at around 800 nm), tissue penetration depths as large as 2 mm have been demonstrated, which are more than 4 times those achievable based on the visible emissions in comparable CaF(2):Er(3+),Yb(3+) nanoparticles. The outstanding penetration depth, together with the fluorescence thermal sensitivity demonstrated here, makes CaF(2):Tm(3+),Yb(3+) nanoparticles ideal candidates as multifunctional nanoprobes for high contrast and highly penetrating in vivo fluorescence imaging applications.
Rare-earth-doped luminescent nanothermometers are not reliable as their emission spectra can be affected by numerous environmental and experimental factors.
Tm3+/Yb3+ doped CaF2, SrF2, and cubic phase NaYF4 nanoparticles dispersed as colloids in water (H2O and D2O) or saline solutions have been directly prepared by a one-step hydrothermal technique, using citrate anions as capping agents, without the need for any postsynthesis reaction. The size monodispersed nanoparticles are directly dispersed in water. Comparison of the upconversion emissions at 800 nm (Tm3+ ions) among the CaF2, SrF2, and NaYF4 hosts indicates that the SrF2 host leads to the highest emission intensity, 2 orders of magnitude higher than the NaYF4 one. Alkali ions (Na+ or K+) counter cations of the citrate salts used as precursors can enter the fluoride host crystals as charge compensators and strongly influence the spectroscopic properties of the lanthanide ions. The Tm3+/Yb3+ doped SrF2 nanoparticles dispersed in a 0.4 g/L concentration solution show detectable upconversion with laser excitation intensities as low as 1 W/cm(2)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.