The COVID-19 pandemic has demonstrated the need for massively-parallel, cost-effective tests monitoring viral spread. Here we present SARSeq, saliva analysis by RNA sequencing, a method to detect SARS-CoV-2 and other respiratory viruses on tens of thousands of samples in parallel. SARSeq relies on next generation sequencing of multiple amplicons generated in a multiplexed RT-PCR reaction. Two-dimensional, unique dual indexing, using four indices per sample, enables unambiguous and scalable assignment of reads to individual samples. We calibrate SARSeq on SARS-CoV-2 synthetic RNA, virions, and hundreds of human samples of various types. Robustness and sensitivity were virtually identical to quantitative RT-PCR. Double-blinded benchmarking to gold standard quantitative-RT-PCR performed by human diagnostics laboratories confirms this high sensitivity. SARSeq can be used to detect Influenza A and B viruses and human rhinovirus in parallel, and can be expanded for detection of other pathogens. Thus, SARSeq is ideally suited for differential diagnostic of infections during a pandemic.
During a pandemic, mitigation as well as protection of system-critical or vulnerable institutions requires massive parallel, yet cost effective testing to monitor the spread of agents such as the current SARS-CoV2 virus. Here we present SARSeq, saliva analysis by RNA sequencing, as an approach to monitor presence of SARS-CoV2 and other respiratory viruses performed on tens of thousands of samples in parallel. SARSeq is based on next generation sequencing of multiple amplicons generated in parallel in a multiplexed RT-PCR reaction. It relies on a two-dimensional unique dual indexing strategy using four indices in total for unambiguous and scalable assignment of reads to individual samples. We calibrated this method using dilutions of synthetic RNA and virions to show sensitivity down to few molecules, and applied it to hundreds of patient samples validating robust performance across various sample types. Double blinded benchmarking to gold-standard quantitative RT-PCR performed in a clinical setting and a human diagnostics laboratory showed robust performance up to a Ct of 36. The false positive rate, likely due to cross contamination during sample pipetting, was estimated at 0.04-0.1%. In addition to SARS-CoV2, SARSeq detects Influenza A and B viruses as well as human rhinovirus and can be easily expanded to include detection of other pathogens. In sum, SARSeq is an ideal platform for differential diagnostic of respiratory diseases at a scale, as is required during a pandemic.
SARS-CoV-2 has evolved rapidly towards higher infectivity and partial immune escape over the course of the pandemic. This evolution is driven by the enormous virus population, that has infected close to 200 million people by now. Therefore, cost effective and scalable methods are needed to monitor viral evolution globally. Mutation-specific PCR approaches have become inadequate to distinguish the variety of circulating SARS-CoV-2 variants and are unable to detect novel ones. Conversely, whole genome sequencing protocols remain too labor- and cost-intensive to monitor SARS-CoV-2 at the required density. By adapting SARSeq we present a simple, fast, and scalable S-gene tiling pipeline for focused sequencing of the S-gene encoding for the spike protein. This method reports on all sequence positions with known importance for infectivity and immunity, yet scales to >20K samples per run. S-gene tiling is used for nationwide surveillance of SARS-CoV-2 at a density of 10% to 50% of all cases of infection in Austria. SARSeq S-tiling uncovered several infection clusters with variants of concern such as the biggest known cluster of Beta/B.1.351 outside Africa and successfully informed public health measures in a timely manner, allowing their successful implementation. Our close monitoring of mutations further highlighted evolutionary constraints and freedom of the spike protein ectodomain and sheds light on foreseeable evolutionary trajectories.
Maternal mRNAs are essential for protein synthesis during oogenesis and early embryogenesis. To adapt translation to specific needs during development, maternal mRNAs are translationally repressed by shortening the polyA tails. While mRNA deadenylation is associated with decapping and degradation in somatic cells, maternal mRNAs with short polyA tails are stable. Here we report an essential role for the germline-specific paralog of the mRNA cap-binding factor eIF4E, known as eIF4E1b, in the storage and repression of maternal mRNAs with short polyA tails. eIF4E1b binds to the mRNA cap and is targeted to ribonucleoprotein complexes through its direct interaction with eIF4ENIF1/4E-T. In early embryos, eIF4E1b binds to a specific set of translationally repressed mRNAs with short or no polyA tails, such as histone mRNAs, which are translated later on during embryogenesis. Consistent with an important role in maternal mRNA dormancy, mutation of eIF4E1b in zebrafish impairs female germline development. Understanding the mechanism and function of eIF4E1B provides new insights into fundamental post-transcriptional regulatory principles governing early vertebrate development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.