The so-called double-double structure in radio sources is the most conspicuous signature of their restarted activity. Observations indicate that in the majority of double-double radio sources (DDRS), the span of the radio lobes is larger than 0.7 Mpc. This lower limit is also suggested by theory. However, it seemed likely that the apparent core of B 0818+214, a radio galaxy with an overall linear size of its radio structure below that limit, could harbour a compact double well aligned with the outer lobes so that the whole object would fulfil the criteria of a DDRS. Here, we present evidence that the central component of B 0818+214, when magnified through the EVN+MERLIN 18-cm observations, shows two FR II-like lobes. As the separation of the inner lobes is not greater than 5.7 kpc, they are immersed in the ISM of the host galaxy. This circumstance is the likely reason why the inner double has become visible, despite the predictions of the theory according to which B 0818+214 as a whole is too small for a new double to develop inside the cocoon inflated during the previous active phase. Moreover, we speculate that its host galaxy is not active at the moment and so the inner double may be in the coasting phase often observed in other medium-sized symmetric objects with intermittent activity. It could be, therefore, that two different mechanisms of accretion disk instabilities, ionisation and radiation-pressure driven, may be independently responsible for triggering active phases, manifesting as the outer and the inner doubles, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.