Tunneling electrons from a low-temperature (5 kelvin) scanning tunneling microscope were used to control, through resonant electronic excitation, the molecular dynamics of an individual biphenyl molecule adsorbed on a silicon(100) surface. Different reversible molecular movements were selectively activated by tuning the electron energy and by selecting precise locations for the excitation inside the molecule. Both the spatial selectivity and energy dependence of the electronic control are supported by spectroscopic measurements with the scanning tunneling microscope. These experiments demonstrate the feasibility of controlling the molecular dynamics of a single molecule through the localization of the electronic excitation inside the molecule.
The T and natural killer (NK) cell-specific gene SAP (SH2D1A) encodes a 'free SH2 domain' that binds a specific tyrosine motif in the cytoplasmic tail of SLAM (CD150) and related cell surface proteins. Mutations in SH2D1A cause the X-linked lymphoproliferative disease, a primary immunodeficiency. Here we report that a second gene encoding a free SH2 domain, EAT-2, is expressed in macrophages and B lympho cytes. The EAT-2 structure in complex with a phosphotyrosine peptide containing a sequence motif with Tyr281 of the cytoplasmic tail of CD150 is very similar to the structure of SH2D1A complexed with the same peptide. This explains the high affinity of EAT-2 for the pTyr motif in the cytoplasmic tail of CD150 but, unlike SH2D1A, EAT-2 does not bind to non-phosphorylated CD150. EAT-2 binds to the phosphorylated receptors CD84, CD150, CD229 and CD244, and acts as a natural inhibitor, which interferes with the recruitment of the tyrosine phosphatase SHP-2. We conclude that EAT-2 plays a role in controlling signal transduction through at least four receptors expressed on the surface of professional antigen-presenting cells.
CD84 is a member of the CD2 subset of the Ig superfamily of cell surface molecules. Its cytoplasmic tail binds to Src homology 2 domain-containing protein 1A (signaling lymphocytic activation molecule-associated protein), a protein encoded by the X-linked lymphoproliferative disease gene. It is preferentially expressed on B lymphocytes, monocytes, and platelets. We show that it is also expressed on thymocytes and T cells. CD84 was positive on CD4−CD8− thymocytes, and its expression decreased with cell maturation. It is expressed on mature T cells preferentially on CD45RO+. To identify the CD84 ligand, we generated a soluble Ig fusion protein containing the human CD84 extracellular domains (CD84-Ig). Because receptor-ligand interactions occur between several members of this subfamily, we assayed CD84-Ig binding with all members of the CD2 family. CD84-Ig bound to CD84-transfected cells, whereas no binding was detected with cells expressing other CD2 subfamily receptors, showing that CD84 binds to itself. Anti-CD84 mAbs recognizing epitopes wholly within domain 1 of CD84 blocked the binding of the CD84-Ig fusion protein to CD84-transfected cells and platelets. Data from CD84 domain human/mouse chimeras further revealed that only the first extracellular domain of the molecule is involved in the ligand receptor recognition. The CD84-CD84 interaction was independent of its cytoplasmic tail. Finally, concurrent ligation of human CD84 with mAbs or CD84-Ig and CD3 enhanced IFN-γ secretion in human lymphocytes. Thus, CD84 is its own ligand and acts as a costimulatory molecule.
X-linked lymphoproliferative disease (XLP) is a primary immunodeficiency characterized by extreme susceptibility to Epstein-Barr virus. The XLP disease gene product SH2D1A (SAP) interacts via its SH2 domain with a motif (TIYXXV) present in the cytoplasmic tail of the cell-surface receptors CD150/SLAM, CD84, CD229/Ly-9, and CD244/2B4. Characteristically, the SH2D1A threepronged interaction with Tyr 281 of CD150 can occur in absence of phosphorylation. Here we analyze the effect of SH2D1A protein missense mutations identified in 10 XLP families. Two sets of mutants were found: (i) mutants with a marked decreased protein half-life (e.g. Y7C, S28R, Q99P, P101L, V102G, and X129R) and (ii) mutants with structural changes that differently affect the interaction with the four receptors. In the second group, mutations that disrupt the interaction between the SH2D1A hydrophobic cleft and Val ؉3 of its binding motif (e.g. T68I) and mutations that interfere with the SH2D1A phosphotyrosine-binding pocket (e.g. C42W) abrogated SH2D1A binding to all four receptors. Surprisingly, a mutation in SH2D1A able to interfere with Thr ؊2 of the CD150 binding motif (mutant T53I) severely impaired non-phosphotyrosine interactions while preserving unaffected the binding of SH2D1A to phosphorylated CD150. Mutant T53I, however, did not bind to CD229 and CD224, suggesting that SH2D1A controls several critical signaling pathways in T and natural killer cells. Because no correlation is present between identified types of mutations and XLP patient clinical presentation, additional unidentified genetic or environmental factors must play a strong role in XLP disease manifestations.
At low temperature (5 K), a single biphenyl molecule adsorbed on a Si(100) surface behaves as a bistable device which can be reversibly switched by electronic excitation with the scanning tunneling microscope tip. Density functional theory suggests that the biphenyl molecule is adsorbed with one dissociated hydrogen atom bonded to a neighbor surface silicon atom. By desorbing this hydrogen atom with the STM tip, the interaction of the molecule with the surface is modified such that it becomes transformed into a multistable device with four stable states having switching yields increased by almost 2 orders of magnitude.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.