MicroRNA 145 (miR145) has been proposed as a tumor suppressor. It was previously shown that miR145 targets the 3' UTR of the insulin receptor substrate-1 (IRS-1) and dramatically inhibits the growth of colon cancer cells. miR145 also targets the type 1 insulin-like growth factor receptor (IGF-IR). We show here that an IRS-1 lacking its 3' UTR is no longer down-regulated by miR145 and rescues colon cancer cells from miR145-induced inhibition of growth. An IGF-IR resistant to miR145 (again by elimination of its 3' UTR) is not down-regulated by miR145 but fails to rescue colon cancer cells from growth inhibition. These and other results, taken together, indicate that down-regulation of IRS-1 plays a significant role in the tumor suppressor activity of miR145.
Multi-potent mesenchymal stem/progenitor cells are present in almost all organs and tissues, although their identity remains elusive. Several isolation strategies have been pursued to identify these cells prospectively, leading to the isolation of various cell populations endowed with multi-lineage mesodermal potential. Historically, mesenchymal stem cells (MSCs) were the first cell population to be isolated from the stromal fraction of most connective tissues. These cells are able to differentiate towards various mesodermal lineages and are currently the most studied adult mesodermal progenitors. Recently, the isolation of a subpopulation of microvascular pericytes (PCs) endowed with multi-lineage mesodermal potential has led to the identification of mesenchymal progenitors that reside in a defined anatomical location, namely the wall of small blood vessels. To gain insight into these two related cell populations, we performed a detailed analysis of the mesodermal potential of isogenic human MSCs and PCs isolated from white adipose tissue. Although both cell populations expressed known mesodermal markers at similar levels and displayed a comparable growth rate, PCs differentiated towards osteocytes, adipocytes and myocytes more efficiently than their MSC counterparts, as revealed by both histological and molecular assays. Our results show that microvascular PCs are more prone to mesenchymal differentiation than MSCs and therefore represent a preferable source of human adult mesenchymal progenitors when adipose tissue is used as a cell source.
Microvascular pericytes (PCs) are considered the adult counterpart of the embryonic mesoangioblasts, which represent a multipotent cell population that resides in the dorsal aorta of the developing embryo. Although PCs have been isolated from several adult organs and tissues, it is still controversial whether PCs from different tissues exhibit distinct differentiation potentials. To address this point, we investigated the differentiation potentials of isogenic human cultured PCs isolated from skeletal (sk-hPCs) and smooth muscle tissues (smhPCs). We found that both sk-hPCs and sm-hPCs expressed known pericytic markers and did not express endothelial, hematopoietic, and myogenic markers. Both sk-hPCs and sm-hPCs were able to differentiate into smooth muscle cells. In contrast, sk-hPCs, but not sm-hPCs, differentiated in skeletal muscle cells and osteocytes. Given the reported ability of the Notch pathway to regulate skeletal muscle and osteogenic differentiation, skhPCs and sm-hPCs were treated with N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT), a known inhibitor of Notch signaling. DAPT treatment, as assessed by histological and molecular analysis, enhanced myogenic differentiation and abolished osteogenic potential of sk-hPCs. In contrast, DAPT treatment did not affect either myogenic or osteogenic differentiation of sm-hPCs. In summary, these results indicate that, despite being isolated from the same anatomical niche, cultured PCs from skeletal muscle and smooth muscle tissues display distinct differentiation abilities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.