Vascular calcification is a severe consequence of several pathological processes with a lack of effective therapy. Recent studies suggest that circulating and resident mesenchymal stem cells (MSC) contribute to the osteogenic program of vascular calcification. Molecular mechanisms underlying MSC osteogenic potential and differentiation remain, however, sparsely explored. We investigated a role for the complement receptor C5aR in these processes. We found that expression of C5aR was upregulated upon differentiation of human MSC to osteoblasts. C5aR inhibition by silencing and specific antagonist impaired osteogenic differentiation. We demonstrate that C5aR expression upon MSC differentiation was regulated by the multifunctional urokinase receptor (uPAR). uPAR targeting by siRNA resulted in complete abrogation of C5aR expression and consequently in the inhibition of MSC-osteoblast differentiation. We elucidated the NFkB pathway as the mechanism utilized by the uPAR-C5aR axis. MSC treatment with the NFkB inhibitor completely blocked the differentiation process. Nuclear translocation of the p65 RelA component of the NFkB complex was induced under osteogenic conditions and impaired by the inhibition of uPAR or C5aR. Dual-luciferase reporter assays demonstrated enhanced NFkB signaling upon MSC differentiation, whereas uPAR and C5aR downregulation lead to inhibition of the NFkB activity. We show involvement of the Erk1/2 kinase in this cascade. In vivo studies in a uPAR/LDLR double knockout mouse model of diet-induced atherosclerosis revealed impaired C5aR expression and calcification in aortic sinus plaques in uPAR -/ -/LDLR -/ -versus uPAR + / + /LDLR -/ -control animals. These results suggest that uPAR-C5aR axis via the underlying NFkB transcriptional program controls osteogenic differentiation with functional impact on vascular calcification in vivo.
Bone remodeling is a dynamic process based on a fine-tuned balance between formation and degradation of bone. Osteoblasts (OBLs) are responsible for bone formation and bone resorption is mediated by osteoclasts (OCLs). The mechanisms regulating the OBL-OCL balance are critical in health and disease; however, they are still far from being understood. We reported recently that the multifunctional urokinase receptor (uPAR) mediates osteogenic differentiation of mesenchymal stem cells (MSCs) to OBLs and vascular calcification in atherosclerosis. Here, we address the question of whether uPAR may also be engaged in regulation of osteoclastogenesis. We show that uPAR mediates this process in a dual fashion. Thus, uPAR affected OBL-OCL interplay. We observed that osteoclastogenesis was significantly impaired in co-culture of monocyte-derived OCLs and in OBLs derived from MSCs lacking uPAR. We show that expression and release, from OBLs, of macrophage colony-stimulating factor (M-CSF), which is indispensable for OCL differentiation, was inhibited by uPAR loss. We further found that uPAR, on the other hand, controlled formation, differentiation, and functional properties of macrophage-derived OCLs. Expression of osteoclastogenic markers, such as tartrate-resistant acid phosphatase (TRAP) and cathepsin K, was impaired in OCLs derived from uPAR-deficient macrophages. The requirement of uPAR for osteoclastogenesis was further confirmed by immunocytochemistry and in bone resorption assay. We provide evidence that the underlying signaling mechanisms involve uPAR association with the M-CSF binding receptor c-Fms followed by c-Fms phosphorylation and activation of the PI3K/Akt/NF-kB pathway in OCLs. We further show that uPAR uses this pathway to regulate a balance between OCL differentiation, apoptosis, and cell proliferation. Our study identified uPAR as an important and multifaceted regulator of OBL-OCL molecular interplay that may serve as an attractive target in bone disease and ectopic calcification.
Our data suggest that the tight junction protein ZO-2 is involved in regulation of VSMC growth control upon vascular injury that is mediated by the transcription factor Stat1. Our findings point to a novel function of ZO-2 in VSMC and implicate ZO-2 as a novel important molecular target in pathological states of vascular remodelling in cardiovascular diseases.
Background: Surgical correction of hyperparathyroidism after kidney transplantation has been associated with significant graft function decline. We examined the effects of parathyroidectomy on short-and long-term graft function and its potential predictors. Methods: For this retrospective, monocentric study we identified 48 (5.5%) out of 892 patients from our protocol biopsy program who received renal transplantation between 2000 and 2007, with parathyroidectomy after transplantation. Data from up to three years after parathyroidectomy was collected and analyzed with multivariable linear regression analyses. Results: Main indications for parathyroidectomy were hypercalcemia and graft calcifications. Parathyroidectomy was successful in 47 patients, with a median drop in serum intact parathormone (iPTH) from 394 to 21 pg/ml. Mean estimated glomerular fitration rate (eGFR) before parathyroidectomy was 60 ± 26 ml/min. At three months after parathyroidectomy, the eGFR was 46 ± 18 ml/min (p < 0.001) but remained stable at one and three years (50 ± 20; 49 ± 20 ml/min). The median annual eGFR change was − 0.5 ml/min before and + 1.0 ml/min after parathyroidectomy. Multivariable modeling identified high iPTH levels and higher eGFR before parathyroidectomy as predictors of the eGFR drop after parathyroidectomy. Lower graft function twelve months after parathyroidectomy was predicted by the eGFR before and the iPTH drop after surgery. Conclusions: These results indicate that the extent of parathyroidectomy is critical and too much lowering of iPTH should be avoided by timely parathyroidectomy, before reaching extreme high iPTH values. In view of the observed loss of eGFR, parathyroidectomy can be considered safe in patients with an eGFR above 30 ml/min.
Background Dialysis patients are at increased risk of HF. However, diagnostic utility of NT-proBNP as a biomarker is decreased in patients on dialysis. GDF-15 and cNEP are biomarkers of distinct mechanisms that may contribute to HF pathophysiology in such cohorts. The aim of this study was to determine whether growth differentiation factor-15 (GDF-15) and circulating neprilysin (cNEP) improve the diagnosis of congestive heart failure (HF) in patients on dialysis. Methods and results We compared circulating concentrations of NT-proBNP, GDF-15, and cNEP along with cNEP activity in patients on chronic dialysis without ( n = 80) and with HF ( n = 73), as diagnosed by clinical parameters and post-dialysis echocardiography. We used correlation, linear and logistic regression as well as receiver operating characteristic (ROC) analyses. Compared to controls, patients with HF had higher median values of NT-proBNP (16,216 [interquartile range, IQR = 27739] vs. 2883 [5866] pg/mL, p < 0.001), GDF-15 (7512 [7084] vs. 6005 [4892] pg/mL, p = 0.014), but not cNEP (315 [107] vs. 318 [124] pg/mL, p = 0.818). Median cNEP activity was significantly lower in HF vs. controls (0.189 [0.223] vs. 0.257 [0.166] nmol/mL/min, p < 0.001). In ROC analyses, a multi-marker model combining clinical covariates, NT-proBNP, GDF-15, and cNEP activity demonstrated best discrimination of HF from controls (AUC = 0.902, 95% CI 0.857–0.947, p < 0.001 vs. base model AUC = 0.785). Conclusion We present novel comparative data on physiologically distinct circulating biomarkers for HF in patients on dialysis. cNEP activity but not concentration and GDF-15 provided incremental diagnostic information over clinical covariates and NT-proBNP and may aid in diagnosing HF in dialysis patients. Graphic abstract Electronic supplementary material The online version of this article (10.1007/s00392-020-01597-x) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.