Infectious salmon anemia (ISA) is a World Organization for Animal Health (OIE)-listed disease of farmed Atlantic salmon, characterized by slowly developing anemia and circulatory disturbances. The disease is caused by ISA virus (ISAV) in the Orthomyxoviridae family; hence, it is related to influenza. Here we explore the pathogenesis of ISA by focusing on virus tropism, receptor tissue distribution, and pathological changes in experimentally and naturally infected Atlantic salmon. Using immunohistochemistry on ISAV-infected Atlantic salmon tissues with antibody to viral nucleoprotein, endotheliotropism was demonstrated. Endothelial cells lining the circulatory system were found to be infected, seemingly noncytolytic, and without vasculitis. No virus could be found in necrotic parenchymal cells. From endothelium, the virus budded apically and adsorbed to red blood cells (RBCs). No infection or replication within RBCs was detected, but hemophagocytosis was observed, possibly contributing to the severe anemia in fish with this disease. Similarly to what has been done in studies of influenza, we examined the pattern of virus attachment by using ISAV as a probe. Here we detected the preferred receptor of ISAV, 4- O -acetylated sialic acid (Neu4,5Ac 2 ). To our knowledge, this is the first report demonstrating the in situ distribution of this sialic acid derivate. The pattern of virus attachment mirrored closely the distribution of infection, showing that the virus receptor is important for cell tropism, as well as for adsorption to RBCs.
The putatively non-virulent subtype of infectious salmon anaemia virus (ISAV), ISAV-HPR0, is proposed to act as a progenitor and reservoir for all virulent ISAVs and thus represent a potential risk factor for the emergence of infectious salmon anaemia (ISA) disease. Here, we provide the first evidence of genetic and functional evolution from an ISAV-HPR0 variant (FO/07/12) to a low-virulent ISAV virus (FO/121/14) in a Faroese Atlantic salmon marine farm. The FO/121/14 virus infection was not associated with specific clinical signs of ISA and was confined to a single net-pen, while various ISAV-HPR0 subtypes were found circulating in most epidemiologically linked marine and freshwater farms. Sequence analysis of all eight segments revealed that the FO/121/14 virus was identical, apart from a substitution in the fusion (F) gene (Q 266 L) and a deletion in the haemagglutinin-esterase (HE) gene, to the FO/07/12 variant from a freshwater farm, which supplied smolts exclusively to the FO/121/14-positive net-pen. An immersion challenge with the FO/121/14 virus induced a systemic infection in Atlantic salmon associated with a low mortality and mild clinical signs confirming its low pathogenicity. Our results demonstrate that mutations in the F protein and deletions in the highly polymorphic region (HPR) of the HE protein represent a minimum requirement for ISAV to gain virulence and to switch cell tropism from a localized epithelial infection to a systemic endotheliotropic infection. This documents that ISAV-HPR0 represents a reservoir and risk factor for the emergence of ISA disease.
Infectious salmon anaemia (ISA) is a serious disease of farmed Atlantic salmon caused by the aquatic orthomyxovirus infectious salmon anaemia virus (ISAV). ISA was first detected in Norway in 1984 and was characterized by severe anaemia and circulatory disturbances. This review elucidates factors related to the pathogenesis of ISA in Atlantic salmon, the dissemination of the virus in the host and the general distribution of the 4-O-acetylated sialic acids ISAV receptor. The knowledge contributes to the understanding of this disease, and why, almost 30 years after the first detection, it is still causing problems for the aquaculture industry.
The salmonid orthomyxovirus infectious salmon anaemia virus (ISAV) causes disease of varying severity in farmed Atlantic salmon, Salmo salar L. Field observations suggest that host factors, the environment and differences between ISAV strains attribute to the large variation in disease progression. Variation in host mortality and dissemination of ISAV isolates with high and low virulence (based on a previously published injection challenge) were investigated using immersion challenge. Virus dissemination was determined using real-time PCR and immunohistochemistry in several organs, including blood. Surprisingly, the low virulent virus (LVI) replicated and produced nucleoprotein at earlier time points post-infection compared to the virus of high virulence (HVI). This was particularly noticeable in the gills as indicated by different viral load profiles. However, the HVI reached a higher maximum viral load in all tested organs and full blood. This was associated with a higher mortality of 100% as compared to 20% in the LVI group by day 23 post-infection. Immersion challenge represented a more natural infection method and suggested that specific entry routes into the fish may be of key importance between ISAV strains. The results suggest that a difference in virulence is important for variations in virus dissemination and pathogenesis (disease development).
Infectious salmon anaemia virus (ISAV), a member of the Orthomyxoviridae family, infects and causes disease in farmed Atlantic salmon (Salmo salar L.). Previous studies have shown Atlantic salmon endothelial cells to be the primary targets of ISAV infection. However, it is not known if cells other than endothelial cells play a role in ISAV tropism. To further assess cell tropism, we examined ISAV infection of Atlantic salmon gill epithelial cells in vivo and in vitro. We demonstrated the susceptibility of epithelial cells to ISAV infection. On comparison of primary gill epithelial cell cultures with ISAV permissive fish cell cultures, we found the virus yield in primary gill epithelial cells to be comparable with that of salmon head kidney (SHK)-1 cells, but lower than TO or Atlantic salmon kidney (ASK)-II cells. Light and transmission electron microscopy (TEM) revealed that the primary gill cells possessed characteristics consistent with epithelial cells. Virus histochemistry showed that gill epithelial cells expressed 4-O-acetylated sialic acid which is recognized as the ISAV receptor. To the best of our knowledge, this is the first demonstration of ISAV infection in Atlantic salmon primary gill epithelial cells. This study thus broadens our understanding of cell tropism and transmission of ISAV in Atlantic salmon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.